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INTRODUCTION
Circulatory shock is common in intensive care unit patients. A large multicenter study showed 
that the etiology of various types of circulatory failure was septic shock (62%), cardiogenic 
(16%), hypovolemic (16%), obstructive (2%), and other types of distributive shock (4%).1 
Current resuscitative strategies target variables such as mean arterial blood pressure, cardiac 
output, central venous pressure, and urine output. In low flow states like circulatory shock, the 
noninvasive blood pressure monitoring is unreliable.

An important component of invasive pressure measurements is the pressure transducer. 
Intensivists should be familiar with the basic principle of transducers, indications for their use, 
and the associated complications.

TRANSDUCER
Transducer is a device that converts energy from one form into another form. Pressure 
transducers convert kinetic energy (mechanical impulse of pressure waveforms, arterial, 
venous and intracranial) into an electrical energy (signal), which is further processed and 
displayed on a screen in a digitized form.2 Two types of transducers are currently available:
1.	 Intravascular pressure transducer with sensor on catheter tip placed directly within blood 

vessel (this system is prone to thrombus deposition and error).
2.	 External transducer which is connected to pressure source by a fluid-filled tubing and 

catheter (hydraulic coupling) and this type of transducer is the most commonly used 
transducer in clinical practice.

Principle of Transducer
Transducer works on the basis of a strain gauge, in which short pieces of wire are connected to 
a diaphragm. Transmission of pressure waveform distorts the shape of diaphragm and alters 
the length of attached wires. Increase in length of wires alters their resistance, which is further 
converted into an electric signal by a Wheatstone bridge circuit.3

C H A P T E R 15
Understanding the Transducer 
Assembly for Invasive Pressure 

Monitoring
Atul P Kulkarni, Suhail S Siddiqui, Syed Nabeel Muzaffar
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106 Section 2: Basic Hemodynamic Monitoring

Wheatstone bridge circuit is an electrical circuit that measures electrical resistance by 
balancing two legs of a bridge circuit (two pairs arranged in a quadrangular format); one leg of 
a pair is formed by the unknown resistance.

Pressure Monitoring System Components and Transducer Setup
Pressure monitoring system includes a number of components like arterial or venous catheter, 
fluid-filled extension tubing (not more than 1.2 meters in length), stopcocks, continuous 
flush device, pressure bag (maintaining around 300 mm Hg pressure in the system), and an 
electronic cable connecting the transducer to bedside monitor. 

The monitoring system should be thoroughly de-aired to prevent errors in measurement 
and the dreaded complication of cerebral air embolism. Stopcocks provide sites for blood 
sampling and allow establishment of a zero reference value. Newer systems have needleless 
blood sampling ports and in-line blood aspiration systems to reduce blood loss and line 
related infection risk. The flush device provides a continuous infusion of saline at the rate of 
1–3 mL/hr to prevent retrograde blood flow or thrombus formation. It has a spring-loaded 
valve for periodic high pressure flushing of monitoring line manually and also to check for the 
optimal functioning of the system doing dynamic response test (also known as fast flush test 
or square wave test).

Transducer Setup
Zeroing: Once connected to monitor, the transducer is zeroed by exposing it to ambient 
atmospheric pressure through an open stopcock and pressing zero on the bedside monitor 
display screen. After zeroing, the transducer will measure all pressures with reference to 
atmospheric pressure. 

If unexpected changes in pressure occur over time, zeroing should be checked again by 
opening the stopcock to atmospheric pressure. If pressure trace does not correspond to the 
zero pressure line, baseline drift in electrical circuit of transducer may have occurred and 
zeroing should be done again.

Leveling: Leveling is the final step in transducer setup in which zero reference point is assigned 
to a specific reference position on patient’s body (structure of greatest interest), which is taken 
to be the position of heart (right atrium) for hemodynamic measurements, and the position of 
circle of Willis for intracranial pressure monitoring. 

It has been found that the reference level for position of heart is an axis which runs 
transversely through thorax at the junction of a plane passing cross-sectionally through fourth 
intercostal space with a plane passing through mid-axillary line (midway between posterior 
surface of body and base of xiphoid process of sternum). This is also known as the phlebostatic 
axis. 

Ch-15 (Sec-2).indd   106 28-06-2018   17:45:31

JA
YPEE BROTHERS 



107Chapter 15: Understanding the Transducer Assembly for Invasive Pressure Monitoring

Fourier Analysis
The arterial pressure waveform is a complex waveform. It consists of a fundamental wave (the 
pulse rate; also known as base sine wave or first harmonic) and a series of other harmonic 
waves, which are sine waves of smaller amplitudes and higher frequencies. This process of 
analyzing a complex waveform in terms of its fundamental frequency and the constituent 
harmonics is called Fourier analysis.4

In order to produce an accurate representation of the original waveform, the waveform 
is broken down into its component sine waves by a microprocessor, and the final waveform 
is regenerated from the fundamental frequency and its first eight harmonics. At least ten 
harmonics are required to represent the pulse pressure and eight harmonics must be analyzed 
to represent the arterial pressure waveform with sufficient resolution to see the dicrotic notch. 
For arterial blood pressure, the frequency equates to the heart rate per second. Therefore, for 
heart rates of up to 180/min (fundamental frequency = 3 Hz), the system should be able to 
reproduce waveforms of up to 24 Hz.

Natural Frequency and Resonance
Every object or material has a frequency at which it freely oscillates and this is called as its 
natural frequency. If a second energy source (arterial pressure wave) is introduced into a 
system with its inherent natural frequency (pressure transducer), the two waveforms if having 
the same natural frequency, will superimpose and the system will begin to oscillate at its 
maximum amplitude. This phenomenon is known as resonance.

If natural frequency of a system lies closer to the frequency of any of the sine wave 
components of arterial waveform, the system will resonate (resulting in excessive amplification 
of signal) and lead to an erroneously elevated systolic blood pressure and a lower diastolic 
blood pressure.

An accurate display of the arterial pressure waveform (for heart rates up to 180/min) can 
be ascertained, if natural frequency of the system is well above 24 Hz because amplitude of the 
higher harmonics above this frequency is so small that the impact of resonance is clinically 
insignificant. 

The natural frequency of a system is determined by the formula:

[fn= r/2.√S/πρL]

where fn is natural frequency of the system, r is radius of tubing, S is stiffness of the tubing, 
ρ is density of fluid, and L is length of the fluid column.

Therefore, for maximizing the natural frequency of a measuring system, we need to use a 
short and wide catheter connected to a stiff and short piece of tubing.

The catheter-transducer system commonly used in the intensive care unit setting is an 
“underdamped, second-order dynamic system”. 5
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108 Section 2: Basic Hemodynamic Monitoring

Damping
Any process that resists vibrations or noise in an oscillating system will reduce the amplitude 
of oscillations in that system. This is known as damping. 

Pressure monitoring systems are underdamped systems, showing some degree of pressure 
overshoot. Some amount of damping may therefore be essential, but excess (overdamping) 
or insufficient (underdamping) damping adversely affects the output. In an arterial pressure 
measuring system, damping is mostly from friction in the pathway of fluid column. However, 
many factors may lead to excessive damping like:
zz Narrow, long or compliant tubing
zz Kinks in cannula or tubing 
zz Three-way stopcocks
zz Air bubbles
zz Clots
zz Vasospasm.

An underdamped system leads to erroneously high systolic blood pressure (SBP) and 
underestimation of diastolic blood pressure (DBP). On the contrary, overdamping results in 
under-reading of SBP and over-reading of DBP. However, the mean arterial pressure (MAP) is 
relatively unaffected in both the cases.

The optimal damping coefficient of a system depends upon its natural frequency. In a 
system with very low natural frequency, no amount of damping can prevent distortion of the 
measured waveform by resonance. On the other hand, in a system with very high natural 
frequency, the waveform is unaffected by resonance (within clinically relevant range of 
frequencies), thereby displaying an adequate dynamic response even at wide latitudes of 
damping coefficients.

Fast Flush Test
Fast flush test is used to determine the natural frequency and damping coefficient of a 
measuring system. In this test, the system is flushed with a high-pressure saline (at around 
300 mm Hg) for a brief period of time and then the flush is suddenly released. After releasing 
the flush, arterial trace shows a number of oscillations before true pressure trace is attained. 
Thereafter, amplitude ratio of two consecutive resonant waves is calculated (ratio of amplitude 
of second oscillation wave to that of the first oscillation wave) and corresponding damping 
coefficient is calculated from a table. Amplitude ratio shows how quickly the system comes to 
rest. Depending upon the damping coefficient, system can be classified into:3

zz Underdamped system (damping coefficient <0.6): There is an overshoot and several 
oscillations before the arterial pressure trace.

zz Optimally damped system (damping coefficient = 0.64): Minimal overshoot and no 
oscillations occur before the arterial pressure trace.

zz Critically damped system (damping coefficient = 1): Precisely measured pressure change 
with no overshoot or oscillations but the system may take a longer time to attain new 
pressure. It is the minimal amount of damping required to prevent any overshoot.
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109Chapter 15: Understanding the Transducer Assembly for Invasive Pressure Monitoring

zz Overdamped system (damping coefficient >1): The system is very slow to respond and the 
full extent of pressure change may be very delayed.
To calculate natural frequency of the system (fn), paper speed (in mm/sec) is divided by the 

distance between two consecutive oscillations (in mm).

COMMON SOURCES OF ERROR AND COMPLICATIONS6

The most frequent error associated with pressure transducer is due to the misuse of equipment 
and misinterpretation of data. Failure to level the transducer to reference point will result in 
measurement error as a result of hydrostatic pressure. Every 10 cm change in height from the 
leveling point, will result in 7.5 mm Hg change in pressure (or 10 cm of water) which may lead 
to minute increase in blood pressure, however if we are measuring central venous pressure 
(CVP) or intracranial pressure (ICP) this may lead to significant error as the later pressures 
(CVP, ICP) are normally low. The system should also be adequately zeroed before measuring 
intravascular pressures. 

The other sources of error could be due to kinking or occlusion of the catheter or tubing and 
due to underdamping or overdamping of the pressure waveform. Comparison of the pressure 
tracing with patient’s plethysmographic waveform and electrocardiogram may also help in 
ruling out the possible artifacts.

Pertaining to the arterial catheter which points upstream, where the blood flows toward 
the catheter and thus, when this blood is suddenly stopped by the tip of the catheter, the 
kinetic energy of the blood is partially converted into pressure. This converted pressure may 
slightly increase (2–10 mm Hg) the SBP measured by an intra-arterial monitoring system. This 
phenomenon of erroneous augmentation of directly monitored systolic pressure is known as 
the end-hole artifact or the end-pressure product. This can be minimized using the catheter 
that has largest possible diameter (with respect to vessel) but smallest length.

All tubing connections should be tightly secured and stopcocks properly closed and placed 
in visible locations to prevent the dangerous complications of hemorrhage or venous air 
embolism.

Pressure transducer connected to arterial cannula poses an additional risk of accidental 
injection of intra-arterial medications and flushing of air directly into the arterial circulation.

Finally, use of an indwelling catheter may be associated with bloodstream infection.7,8 
Pressure transducers have also been associated with transmission of pathogens and infection 
control guidelines should be strictly adhered to while dealing with the transducers.

Additionally, central and arterial line insertion and maintenance may also cause 
mechanical (pneumothorax, arrhythmia, catheter or guidewire embolization) and thrombotic 
(usually in long term use) complications, however detailed discussion of these complications 
is beyond the scope of this chapter.

TRANSDUCER DEVELOPMENT
Over last several decades, pressure transducer development has focused on increasing 
accuracy, miniaturization, and reducing production cost. Several newer types of transducers 
have been developed:
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110 Section 2: Basic Hemodynamic Monitoring

zz Piezoresistive sensors: Piezoresistive sensors use crystal semiconductors (e.g. silicon). 
Mechanical strain changes the crystalline structure of semiconductors, which affects 
electrical resistance of the material. The silicon sensor is less prone to drift and has three 
times the tensile strength of a steel wire but it is susceptible to errors due to changes in 
temperature.

zz Capacitative sensors: Capacitative sensors are based on parallel plate capacitors, where 
one plate of the capacitor is a metal or metal-coated diaphragm. Deflection of diaphragm 
under pressure increases the capacitance by reducing gap between the plates. They are the 
most precise sensors and are less prone to temperature errors. However, the size is larger 
and they are more expensive than piezoelectric sensors.

SUMMARY 
Transducer is a device that changes the energy from one form into another form. Pressure 
transducer is an extremely useful clinical tool and provides a detailed analysis of the patient’s 
cardiovascular system when used judiciously with other components of the pressure 
monitoring system. Knowing the basic principles of its functioning can help us detect and 
prevent the common sources of error, which is essential to ensure that a precise measurement 
is made.
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