
Manual of Ovulation Induction & Ovarian Stimulation Protocols

Editors

Gautam Nand Allahbadia Akanksha Allahbadia Gupta Swati Gautam Allahbadia

Contents

SECTION 1: Fundamentals of Stimulation

1.	Regulation of the Menstrual Cycle and the Effect of Controlled Ovarian Hyperstimulation on Cycle Characteristics
2.	Predictors of Ovarian Response to Controlled Ovarian Stimulation
3.	Clinical Significance of Antral Follicle Count and Anti-Müllerian Hormone in Predicting the Stimulation Outcome
4.	Human Ovulation and Transvaginal Sonography
5.	Significance of Monitoring Folliculogenesis
6.	Identification of Patients at High Risk of Excessive Response to Ovarian Stimulation
7.	Impact of Repeated Ovarian Stimulation on the Ovarian Reserve 59 Anil A Gudi, Amit K Shah
8.	Luteinizing Hormone Activity in Ovarian Stimulation for In Vitro Fertilization: Is it Indispensable?
9.	Luteal Phase Support in Controlled Ovarian Hyperstimulation Protocols: Why and How?70 Shilpa S Saple, Soumya Ramesh
	SECTION 2: Ovarian Stimulation Regimens
10.	Ovarian Stimulation Protocols for Intrauterine Insemination
11.	Clomiphene Citrate for Ovarian Stimulation

12.	Aromatase Inhibitors with Gonadotropins101 Gil Gutvirtz, Eitan Lunenfeld
13.	Clinical Application of Recombinant Follicle-stimulating Hormone 110 Mete Isikoglu
14.	Ovarian Stimulation Protocols of the 2020s using Recombinant Luteinizing Hormone and Recombinant Human Chorionic Gonadotropin
15.	Step-up Protocol in In Vitro Fertilization/Intracytoplasmic Sperm Injection
16.	Step-down Stimulation Protocol for In Vitro Fertilization
17.	Role of Gonadotropin-releasing Hormone Agonists in Ovulation Induction
18.	Gonadotropin-releasing Hormone Antagonist Protocols: Fixed versus Flexible
19.	Gonadotropin-releasing Hormone Agonists versus Gonadotropin-releasing Hormone Antagonists for Ovarian Stimulation: Pros and Cons
20.	Fine-tuning the Role of Antagonist in Assisted Reproductive Technology Programs
21.	Evaluation of the Luteal Phase in Gonadotropin-releasing Hormone Agonist/Antagonist In Vitro Fertilization Protocols
22.	Recombinant Human Follicle-stimulating Hormone versus Human Menopausal Gonadotropin for Controlled Ovarian Stimulation in Gonadotropin-releasing Hormone Agonist Downregulated Cycles
23.	Can Endogenous Luteinizing Hormone Support Treatment with Recombinant Follicle-stimulating Hormone Only in a Gonadotropin-releasing Hormone Antagonist Protocol in Normogonadotropic Patients?

24.	Efficacy of Recombinant Luteinizing Hormone Supplementation to Recombinant Follicle-stimulating Hormone in Gonadotropin-releasing Hormone Agonist Cycles	
25.	Substitution of Recombinant FSH by Low-dose hCG in the Late Follicular Phase in a GnRH Antagonist Protocol: Is it Clinically Effective?	
26.	Luteal Estradiol Pretreatment in Gonadotropin-releasing Hormone Antagonists Cycle versus Long Agonist Cycle224 Manisha Takhtani Kundnani	
27.	Impact of Long Gonadotropin-releasing Hormone Agonist and Gonadotropin-releasing Hormone Antagonist Stimulation Protocols on Endometrial Receptivity233 Apoorva Pallam Reddy, Rajeev Agarwal	
28.	Efficacy of Clomiphene Citrate in Preventing Premature Luteinizing Hormone Surge During Controlled Ovarian Stimulation with Human Menopausal Gonadotropins	
29.	Pretreatment with Oral Contraceptives Prior to Stimulation: Does it Help?247 Aarti Deendayal, Anupama Mettler	
SECTION 3: Aromatase Inhibitors for Ovarian Stimulation		
30.	Aromatase Inhibitors for Ovulation Induction: Indications and Clinical Outcomes	
31.	Clomiphene Citrate versus Aromatase Inhibitors: Mechanism of Action	
32.	Clinical Efficacy and Safety of Letrozole versus Clomiphene Citrate for Ovulation Induction in Women with Polycystic Ovary Syndrome	
	SECTION 4: Ovulation Induction in	
Polycystic Ovary Syndrome		
33.	Induction of Monofolliculogenesis in Patients with Polycystic Ovary Syndrome	

34.	Low-dose Step-down Regimen for Ovulation Induction in Polycystic Ovarian Syndrome
35.	Chronic Ultralow-dose Step-up Protocol for Patients with Polycystic Ovary Syndrome
36.	GnRH Agonist versus Antagonist Protocols for Controlled Ovarian Hyperstimulation in Women with Polycystic Ovary Syndrome
37.	Influence of Body Mass Index on the IVF Outcome in PCOS Patients Undergoing Stimulation with GnRH Agonist or GnRH Antagonists
38.	Role of Adjuvant Glucocorticoids in Ovarian Stimulation for Polycystic Ovary Syndrome332 Dhaval Baxi
39.	Metformin Therapy in Clomiphene-resistant Polycystic Ovarian Syndrome
40.	Mechanism of Action of Metformin for Ovulation Induction in Polycystic Ovary Syndrome Patients
41.	Clomiphene Citrate, Metformin, or Both for the Treatment of Anovulatory Women with Polycystic Ovary Syndrome: Evidence-based Recommendations
42.	Effects of Metformin on Reproductive, Endocrine, and Metabolic Characteristics of Subfertile Women with PCOS: An Evidence-based Review
43.	Laparoscopic Ovarian Drilling for Surgical Induction of Ovulation in Polycystic Ovary Syndrome375 Ameya B Padmawar, Gautam N Allahbadia, Akanksha Allahbadia Gupta
	SECTION 5: Ovulation Triggering
44.	Role of the Gonadotropin-releasing Hormone Agonist as an Ovulation Trigger

45.	Recombinant Luteinizing Hormone, Recombinant Human Chorionic Gonadotropin, and Gonadotropin-releasing Hormone Agonist to Trigger Ovulation: A Critical Evaluation
46.	Luteinizing Hormone and Follicle-stimulating Hormone Surges for Final Oocyte Maturation: Is a Dual Surge Beneficial?404 Suman Puri, Aneesha Puri
	SECTION 6: Complications of Controlled Ovarian Hyperstimulation
47.	Complications of Controlled Ovarian Stimulation413 Aniruddha Malpani, Anjali Malpani
48.	Biophysical Model of Ovarian Hyperstimulation Syndrome Predicting Its Prevention and Treatment with Calcium Gluconate Solution
49.	Role of In Vitro Maturation in High Responders and Patients at Risk of Ovarian Hyperstimulation Syndrome Undergoing Assisted Reproductive Technology
	SECTION 7: Poor Responders
50.	Canceled Cycles in Poor Response: What Next?441 Ricardo H Asch Schuff, Marlene L Zamora Ramírez
	·
51.	Ricardo H Asch Schuff, Marlene L Zamora Ramírez Management Options for Poor Responders to Controlled Ovarian Stimulation
51. 52.	Ricardo H Asch Schuff, Marlene L Zamora Ramírez Management Options for Poor Responders to Controlled Ovarian Stimulation
51.52.53.	Ricardo H Asch Schuff, Marlene L Zamora Ramírez Management Options for Poor Responders to Controlled Ovarian Stimulation

56.	Criteria for Cycle Cancellation in Poor Responders to Ovarian Stimulation528
	Jyoti Tripathi, Aswati Nair, Sulbha Arora
57.	Contribution of In Vitro Maturation to Ovarian Stimulation Cycles in Poor Responders535 Andrea Borini, Scaglione Salvatore
	SECTION 8: Mild Stimulation Protocols and Natural Cycle IVF
58.	Embarking on Natural Cycle In Vitro Fertilization: When and How?
59.	Value of Modified Natural Cycle In Vitro Fertilization in Normal Ovarian Responders555 Biswanath Ghosh Dastidar, Sudarsan Ghosh Dastidar
	SECTION 9: Advances in Stimulation Science
60.	Corifollitropin Alfa: A Treatment Option for Patients Undergoing Controlled Ovarian Stimulation for In Vitro Fertilization/Intracytoplasmic Sperm Injection563 Paulami Dey
61.	Applicability and Reproducibility of Sonography-based Automated Volume Count in Monitoring Follicular Growth577 Soumya Dash
62.	Multiple Stimulation in Personalized Treatment to Meet Different Patient Expectations
Inde	ex593

CHAPTER 33

Induction of Monofolliculogenesis in Patients with Polycystic Ovary Syndrome

Raoul Orvieto, Roy Homburg

ABSTRACT

Chronic low-dose (CLD) follicle-stimulating hormone (FSH) regimens for induction of ovulation for women with polycystic ovary syndrome (PCOS) result in reduced ovarian hyperstimulation syndrome (OHSS) rate to almost zero, with pregnancy rates of 40% and multiple live birth rates of 5.1%. This has been achieved without compromising the success rate when compared to conventional treatments. The latest evidence-based guidelines on infertility treatment related to PCOS concluded that low-dose FSH protocols are effective in achieving ovulation in women with PCOS, but refinement to better control the safety of the low-dose FSH protocols can be achieved if ovulation is only triggered when there are fewer than three mature follicles and canceled if there are more than two mature follicles. Many strategies have been suggested in an attempt to improve CLD FSH protocol outcomes, such as using a step-down instead of a step-up protocol, reducing the starting dose, and substituting FSH with human menopausal gonadotropin (hMG). While none of these strategies has proved successful in improving results, the most crucial factor in determining the rate of monofollicular ovulation and improving results appears to be the size of the dose increment. The currently available recombinant human FSH (recFSH) pens allow a dose adjustment in increments of 8.3 or 12.5 IU with one "click" on the dial, at intervals of 7 days, as necessary. This chronic ultralow-dose regimen is more compatible with Brown's FSH threshold concept. By employing these ultralow doses, the FSH threshold can be accurately found without being exceeded thereby considerably reducing the chance of multifollicular development and its associated risks. Additionally, this chronic ultralow-dose approach significantly reduces the amount of gonadotropin needed and has a low cycle cancelation rate.

INTRODUCTION

Chronic low-dose (CLD) follicle-stimulating hormone (FSH) regimens for induction of ovulation for women with polycystic ovary syndrome (PCOS) have been a breakthrough, resulting in reduced ovarian hyperstimulation syndrome (OHSS) rate to almost zero, with pregnancy rates of 40% and multiple live birth rates of 5.1%. This has been achieved without compromising the success rate when compared to conventional treatments that report a 34% rate of multiple pregnancies and a 4.6% occurrence of severe OHSS.

The low-dose FSH therapy is based on Brown's FSH threshold concept, which suggests that follicular development begins only once a specific FSH threshold level is achieved.³ Moreover, only a minor elevation of FSH concentrations (10–30% above the threshold level) is sufficient to stimulate normal follicle development, whereas a further increase might cause excessive stimulation.

In contrast to conventional therapy that consists of supraphysiological doses of FSH which stimulate a large cohort of follicles and rescue also those destined for atresia, the low-dose regimen aims to reach but not exceed the threshold level of FSH. This principle is achieved by employing the classic low-dose FSH regimen⁴ that uses a low starting dose of gonadotropin (usually 50–75 IU FSH) for 7–14 days without alteration and followed, if necessary, by a weekly small FSH dose increment of 50% of the initial or previous FSH dose, until follicular development starts. The effective dose is then maintained until human chorionic gonadotropin (hCG) administration criteria are met.

- Using this low-dose protocol, mono-ovulation is achieved in a remarkably consistent figure of around 70% of treatment cycles, ^{1,5-7} resulting in the aforementioned acceptable outcomes.
- The latest evidence-based guidelines on infertility treatment related to PCOS⁸ concluded that low-dose FSH protocols are effective in achieving ovulation in women with PCOS, but refinement to better control the safety of the low-dose FSH protocols can be achieved if ovulation is only triggered when there are fewer than three mature follicles and canceled if there are more than two mature follicles.

Many strategies have been suggested in an attempt to improve CLD FSH protocol outcomes, such as using a step-down instead of a step-up protocol, ⁹⁻¹¹ reducing the starting dose to 37.5 ¹² or 52.5 IU, ⁵ substituting FSH with human menopausal gonadotropin (hMG), ¹³ or shortening the initial dose duration by cutting down the initial dose duration of administration from 14 to 7 days without a change of dose. ¹ None of these strategies has proved successful in improving results. However, the most crucial factor in determining the rate of monofollicular ovulation and improving results appears to be the size of the dose increment. In a large randomized controlled trial (RCT) of low-dose step-up protocol, smaller weekly increments of 25 IU in the daily dose were proven more effective and efficient than larger ones (50 IU). ¹⁴

With the introduction of recombinant human FSH (recFSH) pens, an incremental dose rise of just 8.3 or 12.5 IU (16.6% of the initial FSH dose) could be achieved. This increment is significantly lower than the up-to-then widely used and accepted 50% increment and is more compatible with Brown's FSH threshold concept.

In 2009, we demonstrated¹⁵ that using a weekly incremental dose as small as 8.3 IU of FSH in a chronic ultralow-dose step-up protocol for anovulatory

PCOS produced very good clinical results with an excellent safety profile. While utilizing a significantly lower incremental (16.6% of the initial dose) and total (622+286 IU) gonadotropin dose, as compared to the widely used and accepted low-dose gonadotropins regimen, a clinical pregnancy rate of almost 30% per started cycle has been achieved with just one twin gestation and no case of even mild OHSS.

The currently available recFSH pens allow a dose adjustment in increments of 8.3 or 12.5 IU with one "click" on the dial. The incremental dose rise of this order, at an interval of 7 days, as necessary, is applied until the initiation of follicular development. The secret of success in low-dose gonadotropin protocols is to achieve a high rate of mono-ovulation. The use of minimal incremental dose rise helps to attain this goal. By employing an incremental dose rise of just 8.3 or 12.5 IU, the FSH threshold can be accurately found without being exceeded thereby considerably reducing the chance of multifollicular development and its associated risks. Additionally, this chronic ultralow-dose approach significantly reduces the amount of gonadotropin needed and has a low cycle cancelation rate.

CONCLUSION

Using a minimal and manageable dose increase of 8.3 or 12.5 IU when required proves to be effective. It achieves nearly a 30% clinical pregnancy rate per cycle, with a negligible rate of multiple gestations and no cases of even mild OHSS.

REFERENCES

- 1. Homburg R, Howles CM. Low-dose FSH therapy for anovulatory infertility associated with polycystic ovary syndrome: rationale, results, reflections and refinements. Hum Reprod Update. 1999;5:493-9.
- 2. Hamilton-Fairley D, Franks S. Common problems in induction of ovulation. Baillieres Clin Obstet Gynaecol. 1990;4:609-25.
- 3. Brown JB. Pituitary control of ovarian function—concepts derived from gonadotropin therapy. Aust NZ J Obstet Gynaecol. 1978;18:46-54.
- 4. Homburg R. The management of infertility associated with polycystic ovary syndrome. Reprod Biol Endocrinol. 2003;1:109.
- White DM, Polson DW, Kiddy D, Sagle P, Watson H, Gilling-Smith C, et al. Induction of ovulation with low-dose gonadotropins in polycystic ovary syndrome: an analysis of 109 pregnancies in 225 women. J Clin Endocrinol Metab. 1996;81:3821-4.
- 6. Homburg R, Levy T, Ben-Rafael Z. A comparative prospective study of conventional regimen with chronic low-dose administration of follicle-stimulating hormone for anovulation associated with polycystic ovary syndrome. Fertil Steril. 1995;63:729-33.
- 7. Gorry A, White DM, Franks S. Infertility in polycystic ovary syndrome: focus on low-dose gonadotropin treatment. Endocrine. 2006;30:27-33.

- 8. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al.; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33:1602-18.
- 9. van Santbrink EJ, Fauser BC. Urinary follicle-stimulating hormone for normogonadotropic clomiphene-resistant anovulatory infertility: prospective, randomized comparison between low dose step-up and step-down dose regimens. J Clin Endocrinol Metab. 1997;82:3597-602.
- Hugues JN, Cédrin-Durnerin I, Avril C, Bulwa S, Hervé F, Uzan M. Sequential step-up and step-down dose regimen: an alternative method for ovulation induction with follicle-stimulating hormone in polycystic ovarian syndrome. Hum Reprod. 1996;11:2581-4.
- 11. Christin-Maitre S, Hugues JN; Recombinant FSH Study Group. A comparative randomized multicentric study comparing the step-up versus step-down protocol in polycystic ovary syndrome. Hum Reprod. 2003;18:1626-31.
- 12. Balasch J, Fábregues F, Creus M, Casamitjana R, Puerto B, Vanrell JA. Recombinant human follicle-stimulating hormone for ovulation induction in polycystic ovary syndrome: a prospective, randomized trial of two starting doses in a chronic low-dose step-up protocol. J Assist Reprod Genet. 2000;17:561-5.
- 13. Sagle MA, Hamilton-Fairley D, Kiddy DS, Franks S. A comparative, randomized study of low-dose human menopausal gonadotropin and follicle-stimulating hormone in women with polycystic ovarian syndrome. Fertil Steril. 1991;55:56-60.
- 14. Leader A; Monofollicular Ovulation Induction Study Group. Improved monofollicular ovulation in anovulatory or oligo-ovulatory women after a low-dose step-up protocol with weekly increments of 25 international units of follicle-stimulating hormone. Fertil Steril. 2006;85:1766-73.
- 15. Orvieto R, Homburg R. Chronic ultra-low dose follicle-stimulating hormone regimen for patients with polycystic ovary syndrome: one click, one follicle, one pregnancy. Fertil Steril. 2009;91(4 Suppl):1533-5.

Manual of **Ovulation Induction & Ovarian Stimulation Protocols**

Manual of Ovulation Induction and Ovarian Stimulation Protocols is a concise monograph that aims to deliver everything the reader needs to know for performing a risk-free ovarian stimulation for medically assisted reproduction (MAR) and get a favorable outcome. Review of crucial issues such as the significance of monitoring ovarian stimulation, advantages and disadvantages of controlled ovarian hyperstimulation versus minimal stimulation, and the use of various drug regimens and stimulation protocols for various patient sub-sets, will help clinicians in selecting evidence-based and more appropriate protocols. The contributors of this book have leading scientific and clinical backgrounds, with years of experience to support their views. The book serves as a handy practical guide, targeting and settling clinical dilemmas that gynecologists commonly experience in their clinics while providing a window to the newer developments. This book will also be useful to practicing reproductive endocrinologists by way of continuing medical education.

Gautam N Allahbadia MD DNB FNAMS FCPS DGO DFP FICMU FICOG is Medical Director and Consultant, Department of Reproductive Medicine and Infertility, Allahbadia Fertility Clinic, DHCC, Dubai, UAE. He is the Founder and Mentor of Rotunda—The Center for Human Reproduction, the world-renowned in vitro fertilization (IVF) center at Parel, India. He is a noted world authority on ultrasound-guided embryo transfers and one of the pioneers in third-party reproduction in Southeast Asia. He was responsible for India's first transethnic surrogate pregnancy involving a Chinese couple's baby delivered by an unrelated Indian surrogate mother. Gautam N Allahbadia is the Emeritus Editor of the Journal of Obstetrics & Gynecology of India as well as the IVF Lite (Journal of Minimal Stimulation IVF). You can read more about his work at www.gautamallahbadia.com.

Akanksha Allahbadia Gupta MBBS MS (Obs and Gyne) FRM is a Consultant, Department of Gynecology and Infertility, Sumitra Hospital, Noida, Uttar Pradesh, India. She has previously worked at the prestigious infertility clinic Rotunda—The Center for Human Reproduction in Parel, India. She has worked in gynecological oncology as well as the Women's Health Departments at the Massachusetts General Hospital as part of her training with Harvard Medical School, Boston. She has completed her fellowship in minimal access surgery from the World Laparoscopy Hospital, Gurugram, Haryana, India. She is also a certified assessor for assisted reproductive technology (ART) center accreditation as part of the Quality and Accreditation Institute. She has been involved in over a thousand IVF procedures, managing a variety of cases, including patients with high-risk pregnancies, multiple gestations, male factor infertility, endometriosis, multiple fibroids, Müllerian anomalies, premature ovarian failure, and recurrent pregnancy losses. She has won multiple prizes in paper and poster presentations at the national level. She is also a co-author in over 50 manuscripts contributed to internationally—acclaimed textbooks and peer-reviewed journals.

Swati Gautam Allahbadia MD DGO is Consultant, Department of Obstetrics, Gynecology, Reproductive Medicine and Infertility, Rotunda—The Center for Human Reproduction, Parel, India. She is a leading fertility physician, endoscopist and obstetrician based in Mumbai and working in women's health since the last 30 years. She did her graduate and postgraduate studies in medicine and gynecology at the Seth GS Medical College and KEM Hospitals. She was a holder of the VN Majumdar prize in that period. She has been Lecturer, Associate Professor and Unit Head at a Government Hospital in Mumbai. She trained in Endoscopy at the Ethicon Institute and as a holder of the Hargobind Fellowship, trained in endoscopic microsurgery as well as robotic surgery in the United States. She holds diplomas in endoscopy and in reproductive medicine from Germany. She has helped patients from India and across the globe achieve their dream of completing their families. At Rotunda, she has managed several cases, including patients with multiple IVF failures, endometriosis, ovarian tumors, diminished ovarian reserve and recurrent pregnancy losses.

Printed in India

Available at all medical bookstores or buy online at www.ejaypee.com

Medical Publishers (P) Ltd. EMCA House, 23/23-B, Ansari Road, Daryaganj, New Delhi - 110 002, INDIA www.jaypeebrothers.com

Join us on ffacebook.com/JaypeeMedicalPublishers Follow us on on instagram.com/JaypeeMedicalPublishers

