gy books, visit our website www.jaypeebrothers.com, for detailed information on cardiology books

gy books, visit our website www.jaypeebrothers.com, for detailed information on cardiology books

Volume 1

Cardiological Society of India CARDIOLOGY

UPDATE 2023

Editor-in-Chief Pratap Chandra Rath ^{Co-Editors} Manoj Kumar Agarwala Sundar Chidambaram Shabbir Ali Shaik

lia DGY DATE 2023

Volume **2**

rwala 'am

CONTENTS

VOLUME 1

1.	Artificial Intelligence and Machine Learning in Cardiovascular Disease Thomas F Lüscher, Florian A Wenzl	3	
2.	Artificial Intelligence in Echocardiography: Usefulness and Limitations George Wuni, Vinay Wasan, Navin C Nanda	9	
3.	Wearable Devices and Artificial Intelligence in the Diagnosis and Management of Arrhythmias Pankaj Lakhwan, Darshan Krishnappa, Deepak Padmanabhan	18	
4.	ChatGPT and Large Language Models: The Potential to Improve the Practice of Cardiology Varsha Kiron, Preetish Rath	29	
5.	Digital Technology in Heart Failure Management: Hope, Hype, or just Hep? Prayaag Kini, Reeta Varyani	38	
6.	Prediction of Sudden Cardiac Death and Application of Machine Learning Aftab Khan, Navanil Biswas	47	
	SECTION 2: GENERAL CARDIOLOGY		

7.	Obstructive Sleep Apnea, Blood Pressure, and Cardiovascular Outcomes: An Overview	55
	Nagaraj Desai, Venkatesh CR, S Sunilkumar, Prabhakar Koregol	
8.	Point-of-care Cardiac Ultrasound: Current Capabilities and the Cardiologist's Perspective Chandrashekhar K Ponde, Mufaddal Lungwadawala, Mayuri Mhatre, Kunal Patankar	61
9.	Mitral Annular Calcification: Significance in Clinical Practice Rajan Joseph Manjuran	69

xxxiv 🧲	Contents	
10	. Electrocardiogram Yesterday, Today, and Tomorrow SB Gupta	72
11.	• Learnings from the M-PAC Registry S Anne Princy, G Justin Paul	80
12	Relevance of Chest X-ray in Current Cardiology Practice Sunil Kumar Sharma, Sibaram Panda	86
13	Chronic Aortic Regurgitation: Timing of Intervention and Effect of AVR on Outcomes Davasagar Bao V. Bajesh Natuva	98
14	Coronary Artery Disease in Women: How is it Different? Shibba Takkar Chhabra, Ankit Gulia	104
15	. Diet as a Driver for Coronary Artery Disease Jaideep C Menon, Aravind MS	112
16	Interpretation of Troponins in Clinical Practice Kamal K Sethi, Kabir Sethi	120
17	Diagnosis and Management of Reflex Vasovagal Syncope Nishad Chitnis, B Hygriv Rao	130
18	Newer Antiarrhythmic Drugs Soumen Devidutta	137
19	. Degenerative Mitral Valve Madhu Shukla, Jagdish C Mohan	140
20	. Obesity Paradox in Heart Disease Vikas Agrawal, Dheeraj Kela, Aqdas Mumtaz	152

SECTION 3: ANTIPLATELETES AND ANTICOAGULANTS	
21. Newer Antiplatelet Agents Suresh V Patted, Sameer S Ambar, Vijayanand B Metgudmath	161
22. Antiplatelet Use in Chronic Kidney Disease Patients Gopal Chandra Ghosh, Suvro Banerjee	170
23. De-escalation of Antiplatelet Therapy in Post-PCI Patients: Time to Change Our Strategy? Arijit Kumar Ghosh, Nitin Bajaj, Sagar R Makode, Gunjan Ghodeshwar, Pratibha Misra	173

Contents	xxxv
24. Landscape of Oral Anticoagulation in Valvar and Nonvalvar Atrial Fibrillation <i>Gaurav Kumar Arora, Sandeep Bansal</i>	181
25. Factor XI Inhibitors Dipankar Ghosh Dastidar	187
26. Single Antiplatelet Therapy in Percutaneous Intervention: Current Evidence Sajan Narayanan	193

SECTIO	DN 4: HY	PERTE	NSION

27.	Blood Pressure Measurement Methods: Which One is the Best for a Clinician? Abhishek, Gurpreet Singh Wander, Zoofi Shan	205
28.	Current Trends in Hypertension Epidemiology and Blood Pressure Control in India Rajeev Gupta, Kiran Gaur	213
29.	2023 Hypertension Guidelines of the European Society of Hypertension: An Abridged Narrative Giuseppe Mancia, Guido Grassi, Reinhold Kreutz	223
30.	Is Hypertension an Inflammatory Disorder? Tiny Nair	230
31.	From Hypertension to Left Ventricular Hypertrophy to Heart Failure Continuum Debabrata Roy, Navanil Biswas	233
32.	Systolic Hypertension: Clinical Significance and Management Byomakesh Dikshit, Soumen Prasad Behera, Sabyasachi Rout	238
33.	Hypertension and Cognitive Impairment C Venkata S Ram, Mohsin Wali	242
34.	Pulse Wave Velocity as an Indicator of Cardiovascular Disease in Hypertension Mansi Kaushik, Ravi R Kasliwal, Manish Bansal	249
35.	Orthostatic Hypotension: Evaluation and Management SS Binu	257
36.	Hypertension in Old Age and Very Old Age Patients Aditya Goyal, Parth Mashru, Deepesh Agarwal	263
37.	Clinical Evaluation and Management of True Resistant Hypertension SS Iyengar, Sneha Karekar	271

				•
	A 17		17	
•	Ψ.4	2.5	w	
-		_	_	

38. The Choice of a Diuretic in the Treatment of Hypertension: An Updated Narrative Evgeniya V Shalaeva, Jasur B Babadjanov, Franz H Messerli, C Venkata S Ram	278
39. Basic Therapeutic Principles in the Management of Hypertension in Patients with Chronic Kidney Disease Panagiotis I Georgianos, Rajiv Agarwal	286
40. Renal Denervation for Hypertension Therapy: Lessons Learnt and Future Prospects Raymond R Townsend	295
SECTION 5: HEART FAILURE	
41. Heart Failure in India <i>T Govindan Unni</i>	307
42. Heart Failure in Women: How Different than Men Harendra Kumar	311
43. Etiology and Management of Heart Failure in Pediatric Population <i>Anita Saxena</i>	314
44. Heart Failure and Left Ventricular Remodeling: Current Understanding Abraham Oomman, Narra Lavanya, Sudhir Lakamsani	324
45. Cardiac Biomarkers-based Reclassification of Preheart Failure Staging Jayagopal PB, Jain T Kallarakkal	330
46. Role of Four Pillars of Pharmacotherapy in HFrEF: When and How to Initiate? Satyendra Tewari, Harshit Khare	332
47. Implication of the Rapid Initiation of Quadruple Therapy in Heart Failure <i>PS Banerjee, Tanmay Mukhopadhyay, Gourav Bhattacharya</i>	336
48. Guideline-directed Medical Therapy for Heart Failure: The Other Side of the Story	343

Mrinal Kanti Das, Jayanta Sharma

49.	Management of Heart Failure with Preserved Ejection Fraction	352
	Roopali Khanna, Maitreyee Bhattacharyya	

50.	Heart Failure with Preserved Left Ventricular Systolic Function in Valvular	
	Heart Disease	358
	Girish B Navasundi, Praneeth S, Moukthika KVN	

	Contents	xxxvii		
51.	Diastology Pankaj Harkut, Yogesh Kolamkar, Manish Chokhandre	366		
52.	How SGLT-2I Changed the Paradigm in the Medical Management of HF? Amal Kumar Khan, Amartya Khan, Indrani Mandal	375		
53.	Role of Iron Replacement Therapy in Heart Failure with Reduced Ejection Fraction Umesh C Samal, Asmita Samal	380		
54.	Managing Renal Dysfunction after Heart Failure Therapy Initiation Asok Kumar Kar, Ayan Kar	389		
55.	Worsening Heart Failure Satyanarayan Routray, Deepak Ranjan Das, Sradhananda Rout	396		
56.	Beyond ARNI: Upcoming Newer Pharmacotherapy in Heart Failure Vidyut Jain, Avani Jain	402		
57.	Vericiguat in Heart Failure AK Pancholia	408		
58.	Uncovering the Persistent Impact of Rheumatic Heart Disease on Heart Failure and Disease Burden in India Rajeev Gupta, Manu Gupta, Anuj Gupta, Subroto Mandal	416		
59.	Diabetes and Heart Failure: A Double Whammy! Aditi Parimoo, Prafulla G Kerkar	419		
60.	Revascularization for Heart Failure Vivekanand S Gajapati	424		
61.	Cardiac Rehabilitation in Heart Failure: High Expectations Unmet Applications K Venugopal	427		
SECTION 6: LIPIDS				
62.	Genetics of Hypertriglyceridemia Nitin K Kabra	435		

439

63. Triglyceride-rich Lipoprotein as a Risk Factor for Atherosclerotic Cardiovascular Disease

Arijit Ghosh, Arup Dasbiswas

					•
N.	Δ.	A.	71	п	
77	ν.	ν.			

64. Dyslipidemia in Women: An Update Nagamani AC, Varun Marimuthu	445
65. Dyslipidemia in Diabetes Yogesh Varma, Naima Parveen, Sachin Chittawar	451
66. Elevated Lipoprotein(a) in Familial Hypercholesterolemia Patients: Double Heritable Risk for Atherosclerotic Cardiovascular Disease Juhi Singh, JPS Sawhney	458
67. Nonstatin Therapies SN Narasingan, Aravind Duruvasal	464
68. Treatment of Dyslipidemia in Chronic Kidney Disease Patients Manoranjan Mandal, Arshdeep Singh Sandhu, Aditi Rastogi	474
69. Statin-induced Necrotizing Autoimmune Myopathy M Chokkalingam, G Ashok, K Durga Devi	478
70. Management of Dyslipidemia in Young and Asymptomatic South Asians <i>Rajeev Garg, Vardhini Vijaykumar</i>	482
71. Familial Hypercholesterolemia: Diagnosis and Management Sunil Modi, Ranjan Modi	489
72. Overview of Data on How Low Low-density Lipoprotein is Optimal for Secondary Prevention of Cardiovascular Diseases Gaurav Agarwal, Auriom Kar, Rathindra Nath Karmakar, Sunandan Sikdar	496
73. Rare Treatment for Rare Dyslipidemia Saumitra Ray, Srina Ray	500

SECTION 7: ACUTE CORONARY SYNDROME

74.	ST-elevation Myocardial Infarction in Women—Challenges to Management Madhuvanthi Rajendran, Thomas Alexander	507
75.	Transdermal Troponin-I Sensor in Acute Myocardial Infarction Shantanu P Sengupta	511
76.	Pharmacoinvasive Strategy versus Primary Percutaneous Coronary Intervention in ST-segment Elevation Myocardial Infarction Kajal Ganguly, Mainak Mukhopadhyay, Subhasis Roy Chowdhury, Arijit Ghosh	514

	Contents	
77.	Recent Advances in Guideline-directed Management of Acute Coronary Syndrome Lekha Adik Pathak, Ronak V Ruparelia	518
78.	Managing Acute Coronary Syndrome in a Patient with Thrombocytopenia Sudhir Chandra Sinha, G Venkateshwara Reddy	522
79.	The Late Show: Exploring the Consequences of Delayed Percutaneous Coronary Intervention in STEMI Patients Manoj Chopda, Amit Patel, Rahul Shewale, Ganesh Jagdale, Kavish Chopda	529
80.	Risk Stratification and Management Principles for Type 2 Myocardial Infarction Prakas Chandra Mondal	544
	SECTION 8: CHRONIC CORONARY SYNDROMES	
81.	Chronic Coronary Syndrome: Diagnosis and Management Monotosh Panja, Madhumanti Panja	551
82.	Role of Invasive versus Medical Therapy in SIHD: What ISCHEMIA-EXTEND Says? Sourabh Agstam, Rakesh Yadav	571
	SECTION 9: CARDIOMYOPATHY	
83.	Genetics in Cardiomyopathy Devanu Ghosh Roy, Deepanjan Bhattacharya	577
83. 84.	Genetics in Cardiomyopathy <i>Devanu Ghosh Roy, Deepanjan Bhattacharya</i> Hypertrophic Cardiomyopathy: Newer Therapeutic Modalities <i>Kashinath Ghosh Hazra</i>	577 583
83. 84. 85.	Genetics in Cardiomyopathy Devanu Ghosh Roy, Deepanjan Bhattacharya Hypertrophic Cardiomyopathy: Newer Therapeutic Modalities Kashinath Ghosh Hazra Latest Concept of Cardiac Amyloidosis in 2023: Disease Spectrum, Diagnosis, and Management Asesh Haldar, DP Sinha	577 583 590
83.84.85.86.	Genetics in Cardiomyopathy Devanu Ghosh Roy, Deepanjan BhattacharyaHypertrophic Cardiomyopathy: Newer Therapeutic Modalities Kashinath Ghosh HazraLatest Concept of Cardiac Amyloidosis in 2023: Disease Spectrum, Diagnosis, and Management Asesh Haldar, DP SinhaCardiac Sarcoidosis: Multimodality Imaging, Treatment, and Prognosis Devesh Kumar, Nitish Naik	577 583 590 600
83.84.85.86.87.	Genetics in Cardiomyopathy Devanu Ghosh Roy, Deepanjan BhattacharyaHypertrophic Cardiomyopathy: Newer Therapeutic Modalities Kashinath Ghosh HazraLatest Concept of Cardiac Amyloidosis in 2023: Disease Spectrum, Diagnosis, and Management Asesh Haldar, DP SinhaCardiac Sarcoidosis: Multimodality Imaging, Treatment, and Prognosis Devesh Kumar, Nitish NaikRestrictive Cardiomyopathy: An Overview Ajay Bahl	577 583 590 600 606
 83. 84. 85. 86. 87. 88. 	Genetics in Cardiomyopathy Devanu Ghosh Roy, Deepanjan BhattacharyaHypertrophic Cardiomyopathy: Newer Therapeutic Modalities Kashinath Ghosh HazraLatest Concept of Cardiac Amyloidosis in 2023: Disease Spectrum, Diagnosis, and Management Asesh Haldar, DP SinhaCardiac Sarcoidosis: Multimodality Imaging, Treatment, and Prognosis Devesh Kumar, Nitish NaikRestrictive Cardiomyopathy: An Overview Ajay BahlAn Overview of Takotsubo Cardiomyopathy K Meenakshi, MS Ravi, R Rameshwar, SR Sharath Shanmugam	577 583 590 600 606 611

Contents

SECTION 10: CARDIO DIABETES

90. Paradigm Shift in Diabetes Care: From Glucocentric Approach to a Cardiometabolic Approach PC Manoria, Pankaj Manoria	627
SECTION 11: CARDIO-OBSTETRICS	
91. Cardio-obstetrics as a Subspecialty: The Need of the Hour G Justin Paul, S Anne Princy	635
92. Pregnancy with Prosthetic Valve: Management Chandrakanta Mishra	640
93. Peripartum Cardiomyopathy: Diagnosis and Management Chhabi Satpathy, Subhasish Singh, Hemant K Satpathy, Trinath K Mishra	646
94. Management Strategies of Pregnant Women with Congenital Heart Disease <i>Chandan Kumar Das</i>	654
SECTION 12: CARDIO-ONCOLOGY	
95. Cardio-oncology in India: The Need, Scope, and Building Blocks Sonu Abraham, Sumanth Khadke, Anju Nohria, Sarju Ganatra	663
96. Cardiac Toxicity of Oncology Drugs	671

97. Application of Strain by Speckle Tracking Echocardiography in Cardio-oncology675Jesu Krupa

Asha Moorthy, Jain T Kallarakkal

SECTION 13: ECHOCARDIOGRAPHY

98.	Usefulness and Limitations of Echocardiography in the Diagnosis and Assessment of Heart Failure with Preserved Ejection Fraction	683
	Srijani Thannir, Donovon Allen, Vijayadithyan Jaganathan, Navin C Nanda	
99.	Role of Echocardiography in the Assessment of Pulmonary Embolism: Usefulness and Limitations	690
	Debasish Roychoudhury, Navin C Nanda, Vijayadithyan Jaganathan, Nishank P Nooli, Yashaswi Koguru, Srijani Thannir	

	Contents	Xli
100.	Three-dimensional Echocardiography: Past, Present, and Future V Amuthan, RVA Ananth	697
101.	Cardiac Amyloidosis and the Role of Echocardiography and Noninvasive Imaging Modalities in the Diagnosis and Prognosis <i>Nitin J Burkule</i>	711
102.	Transcatheter Edge-to-edge Repair with MitraClip System Vijayakumar Subban, Sai Satish, Krishnaswamy Chandrasekaran	730
103.	Global Longitudinal Strain Assessment by Speckle Tracking Echocardiography in Clinical Practice: How Much Hype? Technical and Acoustic Window Limitations Manish Bansal, Ravi R Kasliwal, HK Chopra	738
104.	Left Atrial Strain in Clinical Practice V Jacob Jose, Jesu Krupa	745
105.	Pulmonary Venous Doppler: An Easy and Accurate but Underutilized Estimate of LA Pressure and Function Biswaranjan Mishra, Shishu Shankar Mishra	750
106.	Echo Assessment of Prosthetic Valve Dysfunction Debika Chatterjee	757
107.	Subcostal Window in Pediatric Echocardiogram S Gnansambandam, S Kumaran	764
108.	Fetal Cardiac Echocardiography and Obstetrics Counseling IB Vijayalakshmi	773
109.	Echocardiographic Evaluation of Mitral Regurgitation Shanmugasundaram S, Ilayaraja U, Rajeswari K	785

SECTION 14: IMAGING

110.	Advanced Cardiac Imaging Update: Role of Computed Tomography and		
	Cardiac Magnetic Resonance	801	
	Soma Sen, Y Chandrashekhar		
111.	Role of CMR in Nonischemic Cardiomyopathies	807	
	Mona Bhatia, Parveen Kumar, Amit Garg, Prasit Maity, Natisha Arora, Sachin Raiya, Akash		

dii 🦳	Contents	
112.	Myocardial Perfusion Imaging with Cardiac Positron Emission Tomography and Single-photon Emission Computed Tomography <i>GN Mahapatra</i>	814
113.	Role of Cardiac Magnetic Resonance in Heart Failure Johann Christopher	831
114.	Role of CT Calcium Score in Current Day Practice Marsha Barreto, Rajesh Thachathodiyl	842

SECTION 15: PREVENTIVE CARDIOLOGY

115.	Metabolic Risk Factors for Atherosclerotic Cardiovascular Disease: A Modern Lifestyle Disease Entity	851
	Vijay Bang, Ashish Deshpande	
116.	Meditation and Yoga for Cardiac Rehabilitation after Myocardial Infarction	862
	Mohit D Gupta, Dixit Goyal, Girish MP	
117.	Reversibility of Atherosclerosis	
	is a Fact Not a Myth	867
	Shishu Shankar Mishra, Biswaranjan Mishra, Satyanarayan Routray	
118.	Environmental Pollutants, Climate Change, and Cardiovascular Diseases	873
	Suganthi Jaganathan, Dorairaj Prabhakaran	

SECTION 16: PULMONARY ARTERIAL HYPERTENSION

119.	Pulmonary Hypertension: Diagnosis and Management Goutam Datta, Anirban Das, Amritesh Biswas	883
120.	Therapeutic Options for Pulmonary Hypertension BKS Sastry	893
121.	Advances in Management of Chronic Thromboembolic Pulmonary Hypertension Sanjay Tyagi, Vishal Batra, Ankur Gautam	900

SECTION 17: PEDIATRIC CARDIOLOGY

122. Breaching the Realms of Cardiac Surgery: Sinus Venosus ASD and RVOT Stenting909Anil Sivadasan Radha, Jenu Rose Jose E909

	Contents	xliii
123.	Recent Developments in Adult Congenital Heart Diseases Rishika Mehta, Amitabha Chattopadhyay	919
124.	Approach to Adult Person with Cyanotic Congenital Heart Disease Srinivasa Rao Malladi	924
	SECTION 18: MISCELLANEOUS	
125.	Late Cardiovascular Manifestation of COVID-19 Infection Tripti Deb	937
126.	Factors Impacting Survival and Neuroprognostication after Out-of-hospital Cardiac Arrest Srinivas Ramaka, Vemuri S Murthy, Vasudeva Murthy Sindgi, Anirudda Deshpande	944
127.	Mental Health of Doctors: Issues and Solutions Vitull K Gupta, Meghna Gupta, Varun Gupta	952
128.	Stem Cell Therapy for the Regeneration of Cardiomyocytes: Myth or Reality! Subroto Mandal, W Sunil, Chan KS Mike, U Ankur, Anil J, Rajeev Gupta	958
129.	Health Innovation in India Sundar Chidambaram	966
130.	Recent Trials in Cardiology Vineet bhatia, Meetu Arora, VK Bahl	970
Index	(i1–i26

VOLUME 2

		/ENITION
SECTION	I SECORUN	

131.	Plaque Rupture versus Erosion: Common Consensus in ST-segment Elevation Myocardial Infarction	
	Dhiman Kahali, Ritwik Ghosal, Asit Das	
132.	Diagnostic Criteria for Microvascular Angina	985
	Filippo Crea, Riccardo Rinaldi, Rocco A Montone	

xliv	Contents	
133.	MINOCA and INOCA: A Contemporary Review Asha Mahilmaran	993
134.	Management of Nonculprit Lesions in ST-elevation Myocardial Infarction Parayaru Kottayil Asokan	1001
135.	Management of Thrombus-containing Coronary Lesions Ajit Desai, Nihar Mehta	1005
136.	Percutaneous Coronary Intervention in Chronic Stable Coronary Artery Disease Vivek Gupta, Chinmay Gupta, Chaitanya Gupta, Devyani Dogra	1015
137.	Hyperemic and Nonhyperemic Pressure Assessment of Coronary Artery Disease Madhu Sreedharan, Kiran Gopinath	1022
138.	Evaluation of Intermediate Coronary Lesions—Beyond Physiology Bahuleyan CG, Shifas Babu M	1032
139.	Intravascular Imaging and Physiology Coregistration: How Best is the Combination Rohit Mody, Abha Bajaj Nee Sheth, Debabrata Dash	1036
140.	Comparison and Limitations of Invasive Fractional Flow Reserve with Resting Full-cycle Ratio and CT-derived Fractional Flow Reserve for Ischemia Detection Arun Mohanty, Ashish Kumar Jain, Aman Makhija	1053
141.	Complex High-risk Transradial Interventions Sanjay Kumar Chugh	1058
142.	Stepwise Approach for Navigating the Difficult Radial Naveen Garg, Harshit Khare, Debabrata Dash	1066
143.	Complications of Transradial Interventions: How to Manage! <i>Tejas M Patel, Sanjay C Shah, Aman T Patel, Samir B Pancholy</i>	1073
144.	Distal Radial Access versus Standard Radial Access versus Transulnar Access in Percutaneous Coronary Intervention <i>Rufus Demel X</i>	1081
145.	LMCA PCI Stenting Techniques—with Tips and Tricks Vijay Bang, Manoj Chopda, Ashish Deshpande	1084
146.	Two-stent Strategy for Bifurcation: Current Best Practices Vaibhav Bandil, Suman Bhandari	1102

	Contents	xlv
147.	Left Main Bifurcation Stenting: What we have learnt from Recent Bifurcation Trials Ashwin B Mehta, Nihar P Mehta	1110
148.	Management Strategies for Calcific Coronary Lesions DS Gambhir	1120
149.	Calcific Nodule—A Tough Nut to Crack I Sathyamurthy, KN Srinivasan, G Sengottuvelu	1125
150.	Coronary Orbital Atherectomy System: Case Selection and Procedural Challenges Dibya Kumar Baruah	1129
151.	Application of Excimer Laser in Cardiovascular Interventions Smit Shrivastava	1135
152.	Safety and Efficacy of Intravascular Lithotripsy in Coronary Interventions Viveka Kumar, Purneshwar Kumar Pandey, Santosh Kumar Singh	1146
153.	Percutaneous Coronary Intervention for Isolated Ostial Left Anterior Descending Coronary Artery Lesions: How Best to Approach? Badrinarayana Tumula, Pradeep Kumar, Shabbir Ali Shaik	1152
154.	Approach to Coronary Aneurysm and Ectasia Kesavamoorthy, Sabari Krishnan, Kousalya Gopalsamy	1154
155.	Current Trends in the Management of In-stent Restenosis Panigrahi NK, Chakradhar P, Anuradha D, Baruah DK, Shashank C, Ravi Kant T	1160
156.	Drug-coated Balloons: Current and Evolving Indications Karunakar Rapolu, Siddharth Bajaj	1168
157.	Zero-contrast/Ultra-low Contrast Percutaneous Coronary Intervention: Tips and Tricks Prathap Kumar, Manu Rajendran, Blessvin Jino	1184
158.	Percutaneous Coronary Intervention in Chronic Kidney Disease Patients Panchanan Sahoo, Ritesh Acharya	1190
159.	Chronic Total Occlusion Retrograde Technique: Tips and Tricks V Suryaprakasa Rao, PLN Kapardhi, Santosh Palled, Kiran Kumar G	1197
160.	Bioresorbable Scaffolds: Present Status Brian Pinto, Surendra Poonia	1203

V	

161.	Multivessel Coronary Artery Disease with Left Ventricular Dysfunction: Management Strategies Dev Pahlajani	1212
162.	Uncrossable and Undilatable Coronary Lesions: Tips and Tricks Anil Sharma, Anushree D Kumbhalkar	1218
163.	Appropriate Use of Imaging in PCI: IVUS and OCT Debdatta Bhattacharyya, Saurabh Dhumale	1226
164.	Coronary Lesion Assessment: Intravascular Ultrasound versus Optical Coherence Tomography Sanjeeb Roy, Roopali Khanna, Arun Mohanty, Nishit Chandra	1234
165.	Optical Coherence Tomography and Intravascular Ultrasound-guided Stenting: Sizing and Expansion Criteria (<i>Image more-Optimize</i> <i>expansion-Improve outcomes</i>) Gopala krishna Koduru, Raghuram Palaparti, Venkata RS Subrahmanya Sarma	1254
166.	Intravascular Ultrasound in Contemporary Practice Karthikeyan Balakrishnan, Sai Satish, Vijayakumar Subban	1263
167.	Intravascular Ultrasound versus Fractional Flow Reserve in Guiding Percutaneous Coronary Intervention: A Comprehensive Comparison Prasant Kumar Sahoo, Shyam Prasad Sahoo, Subasis Dash	1270
168.	Optical Coherence Tomography: What is New and What is the Future? Mahesh Nalin Kumar, Ankush Gupta, Ashwin Mahesh, Abhinav Shrivastava	1281
169.	Optical Coherence Tomography in Acute Coronary Syndrome <i>Rony Mathew, Musna PJ, Jo Joseph</i>	1296
170.	Optical Coherence Tomography in Bifurcation Percutaneous Coronary Intervention Ankush Gupta, Mandava Satya Sahitya, Rajesh Vijayvergiya	1304
171.	Optical Coherence Tomography in Stent Failure Selvamani S, Thomas Xavier Paulsingh JS	1310

SECTION 20: STRUCTURAL INTERVENTION

172.	Imaging in TAVR
	Manoj Kumar Agarwala, Siddharth Bajaj

	Contents	xlvii
173.	Large-bore Vascular Access and Closure Shabbir Ali Shaik, BVA Ranga Reddy, PC Rath	1331
174.	Choice of Valves in Transcatheter Aortic Valve Implantation Vijay Kumar, Vishal Rastogi, Ashok Seth	1337
175.	Transcatheter Aortic Valve Replacement: Where Do We Stand in 2023? Nagendra Boopathy Senguttuvan, Ravinder Singh Rao	1352
176.	A Promising Odyssey: Transcatheter Aortic Valve Implantation's Advancements and Expectations for the Next 20 Years <i>Alain Cribier</i>	1358
177.	Evaluation and Management of Severe Aortic Stenosis with Multivalvular Disease and Coronary Artery Disease Sreenivas Kumar A, Ramakrishna Janapati, Neusha Gopal	1364
178.	Transcatheter Heart Valve: Made in India John Jose, Paul V George	1373
179.	Transcatheter Aortic Valve Implantation in Bicuspid Aortic Valve Stenosis PC Rath, Shabbir Ali Shaik, Pradeep Kumar	1391
180.	Small Aortic Annuli and Horizontal Aorta Praveen Chandra, Nagendra Singh Chouhan, Siddarth Varshney	1397
181.	Protected Transcatheter Aortic Valve Replacement Manik Chopra, Varun Bhatia	1405
182.	BASILICA: Bioprosthetic or Native Aortic Scallop Intentional Laceration to Prevent Coronary Artery Obstruction Ajoe John Kattoor, Vijay Iyer	1408
183.	Commissural Alignment: Why and How? Anantharaman Rajaram, Sai Satish, Vijayakumar Subban	1414
184.	Cuspal Overlap Technique Transcatheter Aortic Valve Replacement: Why, How, and Where? Sanjay Mehrotra	1422
185.	Conduction Abnormalities after Structural Heart Intervention Ashraf SM, Thajfeer UM	1427
186.	Coronary Interventions after Transcatheter Aortic Valve Implantation Ashish Kumar, Himanshu Dabral, Rajneesh Kapoor	1429

VV	_	

187.	Antithrombotic Therapy in Patients with Transcatheter Aortic Valve Implantation Anoop Agrawal	1437
188.	Complications of Transcatheter Aortic Valve Implantation and its Management Sengottuvelu G, Senthilraj Thangasami	1442
189.	Durability of Transcatheter Aortic Valves Amit Kumar Chaurasia, Yogesh Om Sharma, Nitin Kumar Parashar	1458
190.	Valve-in-valve Transcatheter Aortic Valve Replacement Vigyan Vijay Bang	1463
191.	Transcatheter Aortic Valve Replacement for Pure Aortic Regurgitation <i>Kayan Siodia, Srinivas Kudva, Haresh G Mehta</i>	1467
192.	A Tale of Two Leaflets: The Evolution of MitraClip Transcatheter Edge-to-edge Repair Saro Avedikian, Saibal Kar	1476
193.	Transcatheter Mitral Valve Implantation: Technique, Present Status, and Future Directions Nandhakumar Vasu, Ajit S Mullasari	1481
194.	Transcatheter Mitral Valve Replacement Abdul S Talpur, Mustafa Sajjad Cheema, Yasar Satar, Shirley Adivi, Ramesh Daggubati	1489
195.	Transcatheter Therapy for Tricuspid Valve Regurgitation Rajendra Kumar Jain, B Srinivas, Shirisha Reddy Kommareddy	1498
196.	Percutaneous Pulmonary Valve Implantation K Sivakumar	1509
197.	Left Atrial Appendage Occlusion: Current Indications and Technical Challenges Bharat Vijay Purohit, Meeraji Rao	1515

SECTION 21: ENDOVASCULAR AND PERIPHERAL

198.	Endovascular Treatment of Abdominal Aortic Aneurysm with Hostile Neck Anatomy	
	Manoj Kumar Agarwala, Mohammed Abdul Azeez Asad	
199.	Renal Artery Stenosis: When and How to Stent?	1529
	NN Khanna, Swati Singh, Sushant Mishra	

	Contents	xlix
200.	Carotid Artery Stenting in Asymptomatic Carotid Stenosis Ashish Jai Kishan, Atul Mathur	1537
201.	Interventional Therapies in Acute Pulmonary Embolism BC Srinivas, Shanmugam K, Arun Kumar	1544
202.	Interventional Approach to Central Vein Occlusions CM Nagesh, Vijaykumar JR, Babu Reddy, BC Srinivas	1548
203.	Takayasu Arteritis: An Overview Syed Imamuddin	1557
	SECTION 22: MECHANICAL CIRCULATORY SUPPORT	
204.	Cardiogenic Shock: Risk Stratification and Management Swasthi S Kumar, Harikrishnan S	1571
205.	Mechanical Circulatory Support during PCI of Cardiogenic Shock and High-risk PCI Sridhar Kasturi	1578
206.	Hemodynamics of Cardiogenic Shock Anil Dhall, Mahendra Chouhan, Jasneet Singh	1596
207.	Temporary and Durable Ventricular Assist Devices: Current Status Aditi Singhvi, Bagirath Raghuraman	1609
208.	Extracorporeal Membrane Oxygenation in Cardiogenic Shock Dilip Kumar, Dipanjan Chatterjee, Debopriyo Mondal, Rana Rathor Roy, Ashesh Halder, Sourav Das	1618
209.	Cardiac Transplantation: Indications, Eligibility, and Current Outcomes Alla Gopala Krishna Gokhale, Siddharth Chinta, Mrinalini Alla	1627
210.	Heart Transplant: Pre- and Postmanagement R Ravi Kumar, Sarumathi Thangavel	1631

S	EC.	ГІС)N	23:	ELI	EC	FR)PH	YSI	OLO	GY
-								_			

211.	ABC of Electrophysiology Study VS Ramchandra	1641
212.	Basic and Advanced Electrophysiologic Mapping Techniques in Arrhythmias Ajay Naik, Aarya Naik	1646

Cor	ntents
COI	itents

213. Catheter Ablation of Ventricular Arrhythmias in Ischemic and Nonischemic Cardiomyopathies P Vijay Shekar, C Narasimhan	1655
214. Conduction System Pacing: Where are We Today? Shunmuga Sundaram Ponnusamy	1665
215. Pacing-induced Cardiomyopathy Anand M, John Roshan Jacob	1673
216. Left Ventricular Dyssynchrony Assessment and Cardiac Resynchronization Therapy Optimization Siddhartha Mani	1677
217. Sinus Node Disorder: Diagnosis and Management Vijay Garg, Himanshu Jain, Shivangi Tiwari, Siddhant Gupta	1685
Index	i1–i22

Scan the QR code to access references of all the chapters.

Digital Technology in Heart Failure Management: Hope, Hype, or just Hep?

Prayaag Kini, Reeta Varyani

ABSTRACT

Heart failure (HF) patient cohort is an ever-growing population owing to higher longevity in current times. HF management has grown by leaps and bounds with the advent of the "Fantastic Four" concept of pharmacological management; yet there is a growing need of managing HF remotely after patient discharge to facilitate "continuity of care". The use of drugs such as angiotensin receptor-neprilysin inhibitor (ARNI) and sodium-glucose cotransporter-2 inhibitors (SGLT-2Is) combined with electronic devices for HF management has thrown up new vistas; however, there is need of continuous innovation to facilitate patient-end management and remotely monitor data from physician perspective. Also COVID epidemic brought in an urgent need to remotely manage disease in various dimensions and in a unique way facilitated the advent and use of more Artificial Intelligence (AI)-based healthcare management in general. AI has in last few years to a decade demonstrated significant capability to radically change nearly all areas of HF including diagnosis, deviceguided accurate "measurement" and monitoring, eventually leading to better management. Al possesses the capability to perform tasks using similar-to-human capability by receiving input data, learning semantics from observing patterns in it, predicting results based on variates appearing repeatedly and thus formulating an analysis using various algorithms and cognitive computing eventually culminating in creation of an algorithm. In the cardiac sphere, AI can analyse raw image data from cardiac imaging techniques like electrocardiography, echocardiography, computed tomography, cardiac MRI amongst others to generate input data. AI and machine learning (ML)-based HF diagnosis using AI-Clinical Decision Support System (AI-CDSS), and deep learning with convolutional neural networks for image analysis are other exciting topics of ongoing research. The use of decision trees by rough Sets (RS), and logistic regression (LR) methods utilized to construct decision-making model to diagnose congestive HF, and role of AI in early detection of future mortality and destabilization episodes has played a vital role in optimizing cardiovascular disease outcomes. Wearables for HF and rhythm monitoring such as Apple Watch, the wearable Zio patch and the wear-on µCor patch should be accurate for clinical use, and considered more than just fancy gadgetry. Remote monitoring with devices such as remote dielectric sensing (ReDS) and intrathoracic impedance monitoring devices for HF are already on the horizon for clinical use. Eventual patient management should remain in clinical domain with digital technology playing a supportive role for the same.

Keywords: Digital health, heart failure, remote monitoring, wearables, sustainability.

INTRODUCTION

Clinical medicine, especially cardiovascular medicine, has made tremendous strides in both diagnostic and therapeutic armamentaria, leading to higher longevity and more patients surviving to older ages in the last two decades. The fallout is a unique challenge of managing a new and ever-increasing cohort of heart failure (HF) patients that has worldwide led to higher morbidity and financial implications. It is estimated that by 2030, 9.8 million people ≥ 18 years of age will be living with HF, representing ~50% increase in prevalence compared to 2012,^{1,2} with almost half of the patients dying within 5 years of initial diagnosis.^{2,3} Despite the availability of newer, effective, evidence-based treatment options such as angiotensin receptor-neprilysin inhibitor (ARNI) and the gliflozins, the prognosis remains uncertain for this subset of patients. This has ushered in the need of digital health and remote monitoring (RM) at home post-discharge, including but not limited to implantation of electronic devices which primarily use artificial intelligence (AI) for their functioning.

Where is the trade-off between expensive "fancy" digital healthcare (DH) gadgetry and effective management of HF, as of circa 2023?

RISE OF DIGITAL HEALTHCARE DESPITE THE OBITUARY OF IBM WATSON

Just over a decade ago, AI made one of its showier forays into the public's consciousness when IBM's Watson computer appeared on the American quiz show Jeopardy! that subsequently led its foray into making a bigger splash in oncological disease and management.⁴ Although the machine triumphed comfortably, the next decade exemplified the numerous shortcomings of applying AI to healthcare. The brouhaha finally ended in 2022 when it was realized that data entry could be time-consuming and labor-intensive for a relatively small payoff, leading to MD Anderson finally backing out of its partnership with Watson. The two key failures of the Watson cited were interoperability and data collection and management. Watson XAI (using eXplainable AI) has resurfaced in the last 2 years—this "simpler" version of Watson based on machine learning (ML), holding more real-life applicability as per IBM.⁵

ADVENT OF DIGITAL TECHNOLOGY AND ARTIFICIAL INTELLIGENCE FOR HEART FAILURE MANAGEMENT

Digital health entails the use of various forms of information and communications technology to monitor patient health with the aim of improving outcomes of care for HF at the patient end, even after he or she is physically distanced from the treating primary physician. Mobile healthcare or "mHealth," a subset of digital health, involves the use of mobile wireless technologies to the same end^{6,7} and has been applied to even diagnosis of HF using ML techniques.⁷ There is ample evidence today that supports the potential role of digital health across the entire spectrum of HF, including primary prevention, early detection, and treatment options for HF, eventually reducing associated morbidity and mortality.

The diagnosis of HF can be difficult, even for HF specialists. Artificial Intelligence-Clinical Decision Support System (AI-CDSS) was designed with the potential to assist physicians in HF diagnosis using a hybrid (expert-driven and ML-driven) approach of knowledge acquisition to evolve the knowledge base with HF diagnosis. A retrospective cohort of 1,198 patients with and without HF was used for the development of AI-CDSS (training dataset, n = 600) and to test the performance (test dataset, n = 598). A prospective clinical pilot study of 97 patients with dyspnea was used to assess the diagnostic accuracy of AI-CDSS compared with that of non-HF specialists. In retrospective cohort, the concordance

rate was 98.3% in the test dataset. The concordance rate for patients with HF with reduced ejection fraction (EF), HF with mid-range EF, HF with preserved EF, and no HF was 100%, 100%, 99.6%, and 91.7%, respectively. In a prospective pilot study of 97 patients presenting with dyspnea to the outpatient clinic, the concordance rate between AI-CDSS and HF specialists was a whopping 98%, whereas that between non-HF specialists and HF specialists was 76%. Thus, AI-CDSS showed a high diagnostic accuracy for HF and may be useful especially when HF specialists are not immediately available.

DID CORONAVIRUS DISEASE 2019 OPEN UP THE CASCADE OF DIGITAL HEALTHCARE AVENUES?

As more of the medical world becomes digitally empowered and "cloud connected," technology can reach the patient's bedside remotely for better HF management. OptiVol⁸ and CardioMEMS⁹ were two evidence-based devices already in use for RM for fluid management in HF patients. The coronavirus disease 2019 (COVID-19) pandemic forced healthcare systems to reevaluate the widespread adoption of DH approaches to HF diagnosis and care.¹⁰ Self-monitoring of blood glucose (SMBG) or management of sugars in diabetic patients using sensors had already opened new avenues to active patient participation with limited physician contact.¹¹ This was closely followed by self-management of blood pressure to reduce the risk of HF rehospitalization and mortality due to HF. Reimbursement mechanisms were also forced to keep pace parallelly to enhance the usage of these DH technologies.12

APPLICATION OF ARTIFICIAL INTELLIGENCE-BASED DIGITAL TOOLS FOR MANAGEMENT OF HEART FAILURE

Digital technology that incorporates clinical data recording, combined with clinician feedback and structured followup, appears to be more efficacious and has been proven to reduce hospital readmissions.¹² Multiple forms of noninvasive mobile digital technology are now available to assist in the optimal management of HF patients, such as teleconsultations, SMS systems, smartphone applications, wearables, and RM systems (Figs. 1 and 2).

Teleconsultation

Teleconsultation employs the facilities of enhanced communications technology to enable the physician to consult with patients at a distance and has been a possible solution to overburdened outpatient HF clinics. The ESC has even set guidelines on the management of HF via RM much before its enhanced popularity with the advent of the COVID-19 pandemic.^{13,14}

FIG. 1: Spectrum of applications of AI in HF management.

(AI: artificial intelligence; CRT: cardiac resynchronization therapy; DL; deep learning; ECG: electrocardiogram; GDMT: guideline-directed medical therapy; HF: heart failure; ICD: implantable cardioverter defibrillator; LVAD: left ventricular assist device; RV: right ventricular)

FIG. 2: Managing data accrued from remote monitoring facilities.

(EHRs: electronic health records; GDMT: guideline-directed medical therapy; ML: machine learning)

Device-based Monitoring for Decompensation of Heart Failure

Patients with symptomatic HF with severely reduced left ventricular ejection fraction (LVEF) are advised cardiac implantable electronic devices such as an implantable cardioverter defibrillator (ICD) or cardiac resynchronization therapy (CRT). These devices are periodically "interrogated" to monitor device alerts for arrhythmias, therapies provided by the machine, and device longevity and elective replacement indicators such as battery voltage. Most modern devices can wirelessly be monitored from a central healthcare specialist facility or heart station by enabling Bluetooth facilities using smartphone applications.

Intrathoracic impedance monitoring (IIM) correlates well with pulmonary fluid content, multiparametric monitoring incorporating detection of heart sounds and concomitantly studying intrathoracic impedance, patient heart rate, and heart rate variability with physical activity carries more promise scientifically (**Fig. 3**).

The LIMIT-CHF (Lung Impedance Monitoring in Treatment of Chronic Heart Failure) trial¹⁵ randomized to either the active group (IIM alarm turned on and diuretic dose increased by 50% for 1 week in the event of alarm sounding) or the control group (IIM alarm turned off) found no unplanned HF visits in the active group versus 0.1 ± 0.3 per patient in the control group. In another study, patients were studied with an implantable device at nine English hospitals over an average of 2.8 years to adjust therapies based on temporal results. Though it failed to show a clear mortality benefit, refined iterations of this model in time to come may prove beneficial with larger data volume. Ongoing studies may expand the choice of location of IIM, allowing a more personalized approach. Implant sites currently under investigation in first-in-human safety trials include the inferior vena cava (FUTURE-HF trial) and the

FIG. 3: Intrathoracic impedance monitoring (IIM).

left atrium [VECTOR-HF (V-LAP[™] Left Atrium Monitoring systEm for Patients With Chronic sysTOlic and Diastolic Congestive heaRt Failure) trial]. Placed in the interatrial septum, preliminary results from the left atrial pressure sensor show it is likely to be safe—the readings showing a strong correlation with invasive pulmonary artery pressure (PAP) measurements and improvement in New York Heart Association (NYHA) class based on device-guided therapy.¹⁶

The HeartLogic algorithm (Boston Scientific) was able to identify HF decompensation with a sensitivity of 70% and an unexplained alert rate of only 1.47 per patient-year, with a median lead time of 34 days before the HF event.¹⁷ Implantable hemodynamic monitors have shown promise at preventing HF hospitalization with early detection of rise in PAP in response to increasing intracardiac left ventricular (LV) end-diastolic pressures typically preceding symptoms by up to 2–3 weeks.

Remote Dielectric Sensing (ReDS[™]) (Sensible Medical, USA) is an easy-to-use, noninvasive system for the monitoring and management of lung fluid in patients with HF and other chronic diseases requiring lung fluid level monitoring. ReDS technology originated in the defense technology that allows the military to see through walls and find survivors in the rubble of collapsed buildings. This was adapted for medical use by creating a system to see through the "walls" of the chest and inside the lungs of HF patients. It takes less than a minute to get a ReDS measurement at the hospital, clinic, or even in the comfort of a patient's home (**Fig. 4**).

The use of the ReDS noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute HF was evaluated in a pilot study by Bensimhon et al. who performed¹⁸ ReDS measurement for all patients once they were deemed ready for discharge. Patients in the treatment arm with residual lung congestion defined by ReDS \geq 39% had HF consultation and further diuresis. Of 108 HF patients [50% male, age 73.6 ± 12.6 years, body mass index (BMI) 29.3 \pm 4.3 kg/m², EF 38.5 \pm 15.1%, B-type natriuretic peptide (BNP) 1138 ± 987 pg/mL], 32% demonstrated residual lung congestion at the time of proposed hospital discharge. ReDS guided therapy triggered additional diuresis in 30% of the patients in the treatment arm (average weight loss 5.6 pounds, p = 0.02). Patients discharged as planned with residual lung congestion with ReDS ≥ 39% had higher 30-day readmission rate compared to patients who were adequately decongested at discharge with ReDS < 39% (11.8% vs. 1.4%, p = 0.03). They concluded that ReDS testing demonstrated that 32% of HF patients deemed ready for discharge have clinically significant residual lung congestion which was associated with a higher risk of readmission. ReDS-guided management was associated with significant decongestion but not a reduction in HF readmissions in this sample.

A further meta-analysis on the efficacy of ReDS in the prevention of HF rehospitalizations was presented by Sattar et al. among 985 patients across seven studies.¹⁹ Patients with HF monitored with ReDS had significantly lower odds

FIG. 4: Remote Dielectric Sensing (ReDS) for heart failure (HF).

of hospital readmission compared with non-ReDS patients. Subgroup analysis based on the duration of follow-up showed lower odds of readmission within 30 days as well as between 1 and 3 months. ReDS effect of lower readmissions of HF was observed irrespective of the duration of follow-up (<1 month vs. 1–3 months). ReDS monitoring significantly lowered the odds of HF readmission within 3 months compared to participants not using ReDS.

As mentioned earlier, remote daily PAP monitoring in CardioMEMS device-implanted patients had already been facilitating titration of medications, mitigating the need to be subsequently hospitalized by up to 30% and ushering in the era of AI-based fluid management.⁹ The MultiSense study, MANAGE-HF (Multiple Cardiac Sensors for Management of Heart Failure) trial, and GUIDE-HF (Hemodynamic-GUIDEd Management of Heart Failure) randomized trial are more such instances in the pipeline and will impact clinical practice in the coming years.^{17,20}

The European registry database shows a recent decompensation of HF portended to a 24% increased risk of death within 1 year—identification of the event before patients deteriorate therefore carries obvious implications. Simple avenues of self-monitoring by patients for their symptoms, pedal edema, weight, and blood pressure do not require complex training and can be managed even by an educated family member, and hence have been a mainstay of HF management for over two decades now and can subvert a "too little, too late" situation with patients having lost crucial time in instituting therapies in a timely manner.^{21,22}

Home monitoring has proven safe and effective with even routine device checks collecting valuable physiological and rhythm data that may correlate with HF status; the main criticism however has been that device-based impedance alerts resulted in a 79% increase in HF hospitalization in one randomized trial due to both low specificity of alerts and the lack of immediate trained on-site healthcare personnel to respond to these alerts not to mention the obvious anxiety for the patient and family triggered by an audible alert at unearthly hours.²¹

In a very recent development in 2023,²² published in Lancet Digital Health, Dr Banerjee et al. detected five ML-informed subtypes of HF, which might inform etiological research, clinical risk prediction, and the design of HF trials. They classified them as (1) early onset, (2) late onset, (3) atrial fibrillation (AF) related, (4) metabolic, and

(5) cardiometabolic. In the external validity analysis, *late onset* and *cardiometabolic subtypes* of HF were the most similar and strongly associated for hypertension, myocardial infarction, and obesity. They have developed a prototype app for routine clinical use and enable its effectiveness—large-scale use of this is eagerly awaited.

Remote Monitoring

Remote Monitoring is the use of telecommunication technologies to monitor patient status at a distance **(Fig. 5)**. In structured telephone support (STS), patients are called by a member of the HF team to discuss symptoms, drug therapy, and compliance with lifestyle measures.^{23,24} STS is relatively labor intensive and costly due to gadgetry and logistic requirements, and a 2015 meta-analysis reported only a marginal mortality benefit [risk ratio (RR) 0.87 for all-cause mortality; 95% confidence interval (CI) 0.77–0.98] and reduction in HF hospitalizations (RR 0.85; 95% CI 0.77–0.93) with no effect on all-cause hospitalizations.

One randomized trial of telemonitoring in 1,571 HF patients with NYHA Class II–III symptoms and HF hospitalization in the preceding 12 months compared a wireless system, transmitting daily readings of weight, blood pressure, oxygen saturations, heart rate, and a health status questionnaire, with usual care. The composite outcome of all-cause mortality and percentage days hospitalized was reduced (RR 0.8; 95% CI 0.65–1.00). A meta-analysis of smaller randomized telemonitoring trials showed a small

mortality benefit also. (RR 0.80 for all-cause mortality; 95% CI 0.68–0.94).²⁵

Apps and Wearables

The last decade has seen a rapid proliferation of health apps. In 2017, it was estimated that 325,000 health apps were available on smartphones.²⁶ Despite this, very few of them have been designed specifically for HF patients; a 2019 review identified 10 apps focused on HF self-care available on the Apple App Store and Google Play Store. Four of these were developed by scientific societies [including the American Heart Association (AHA)] and predominantly aimed at patient education, symptom tracking, and prompting users to seek early self-care in HF.27 While RM systems are generally "prescribed" by clinicians and often reimbursed by healthcare systems or insurance companies, apps and wearables are largely marketed directly to consumers as tools for health and lifestyle maintenance. Consumer wearables are devices that record and transmit physiological signals that can be worn, such as activity trackers and smartwatches, and these are becoming increasingly popular. Some products such as the Fitbit²⁸ are user-friendly and also offer irregular pulse detection, single-lead ECG, blood pressure, and oxygen saturation monitoring, and carry potential in HF self-care. The fact though remains that these wearables and HF apps have not been actually evaluated in randomized clinical trials (RCTs), and without quality evidence and clear app standards, there is need for regulation in this field.

FIG. 5: Remote monitoring system's workflow for heart failure (HF) monitoring.

USING DATA FROM WEARABLES IN HEART FAILURE PATIENTS

Physical activity is an important prognostic parameter in HF and a measure of functional limitation. 6-minute walk test performance is a strong predictor of subsequent cardiac death in HF patients but is rarely used outside of research as it is cumbersome to measure. A retrospective study of 189 patients with self-reported HF showed a significant negative association between physical activity and mortality, and a prospective Japanese study of 170 HF patients showed a step count of <4,889 steps/day was a stronger predictor of mortality than VO₂ max (peak oxygen consumption, an important marker of cardiopulmonary fitness) on exercise testing.²⁹ However, prospective evidence of using activity monitors to guide therapy and adherence to exercise therapy in HF is lacking and not endorsed widely by authoritative bodies.^{29,30} Patient acceptability of wearables, including a watch or other wrist-worn devices, is also likely to be variable.²⁸⁻³⁰

INCORPORATING DIGITAL TECHNOLOGY INTO ELECTRONIC HEALTH RECORDS: THE WAY AHEAD

Activity monitors in the form of a wristband/watch that use accelerometry are the most common form of wearable devices and have found easy acceptance with lay population, despite the fact that these devices have less accurate performance at low ambulation speeds.³⁰ Wearable heart rate monitors use photoplethysmography that relies on illumination of a capillary bed and measurement of pulsatile changes in light absorption as does an oxygen saturation probe in most critical care units. Analysis of photoplethysmogram (PPG) waveforms can help detect irregularities in pulse and therefore potentially be used for AF screening and critical decisions regarding rate or rhythm control, and potential need for lifelong anticoagulation-this especially if PPG is combined with ECG patch recording for confirmation.³¹⁻³³ Performance of PPG-based devices is best for resting heart rate and has been shown to significantly degrade with exertion, and a study of HF patients using Fitbit and Apple Watch showed poor accuracy in measuring dynamic heart rate changes. PPG alone cannot differentiate between AF and other causes of irregular pulse, but it can be combined with ECG patch recording for confirmation in patients with an irregular pulse.32-34

In the large-scale AF screening, Apple Heart Study using a PPG-based smartwatch algorithm with ECG patch analysis done, up to one-third of patients had confirmed AF during the subsequent 2-week recording period and 77% of irregular pulse notifications with simultaneous recording were confirmed to be AF, with atrial ectopy making up the majority of the remainder. The HEARTLINE study, recruiting 150,000 patients aged over 65 years, is investigating whether the irregular pulse detection algorithm and ECG feature lead to a reduction in stroke and death in a real-world setting.³⁵ In addition to PPG and ECG features, miniature wrist oscillometric sphygmomanometers can now be incorporated into a smartwatch for blood pressure monitoring; the first such device to be licensed showed high accuracy when compared with manual blood pressure measurement at rest.³⁶

MACHINE LEARNING AND DIGITAL HEALTH FOR PATIENT CARE IN HEART FAILURE

Most implanted devices can only provide short daily samples of data, but noninvasive monitors linked with smartphones can transmit continuously and allow for larger, richer datasets for analysis. ML is the proverbial "new kid on the block" in medicine, though it has been existing for decades in other fields of digital technology. ML bases itself on computers training themselves on large sample datasets to build predictive mathematical models. As the systems are able to incorporate these data with electronic health records, the resulting datasets offer the potential of studying unknown disease patterns and predictors and potentially leading to "customized" solutions (precision medicine). Algorithms using convoluted neural networks and deep learning are gaining big time on ECG and ECHO image analysis for creating stencils for more accurate, faster, and earlier diagnosis based on big data input and are exciting tools to look forward to in the future.

The LINK-HF study, for instance, investigated the use of a multisensor patch continuously measuring ECG signals, thoracic impedance, body temperature, and accelerometry in 100 HF patients with real-time continuous data uploaded to the cloud via a smartphone to create a personalized ("customized") monitoring and response system for individual patients.³⁷ The ML algorithm succeeded in predicting impending decompensation with a sensitivity of 88% and a specificity of 86%, a median of 6.5 days before the HF event.

Machine learning algorithms may pick up subtle ECG changes not detectable by human observers. They have shown promise in predicting future episodes of AF from sinus rhythm ECGs and even at identifying left ventricular systolic dysfunction (LVSD) from ECGs. A study from the Mayo Clinic in the United States retrospectively analyzed the ECGs of 1,606 patients without known LVSD who had a subsequent echocardiogram within 30 days.³⁸ The ML algorithm was able to predict LVSD (defined as an EF < 35%) with a sensitivity and specificity of 74% and 87%, respectively. The area under the receiver operating characteristic curve (AUROC) was 0.89, outperforming N-terminal pro-BNP (AUROC: 0.80) at predicting LVSD. Such algorithms are not yet in clinical practice and would need to be certified as a medical device before they would be able to be used, but they may form part of decision and diagnostic aids in the near future.

The μ Cor patch (Zoll) (Fig. 6) and Zio patch (Fig. 7), equipped with an ECG monitor and radiofrequency

FIG. 6: μ Cor wear-on patch (Zoll) patch for detection of abnormal heart rhythms.

FIG. 7: Wearable Zio patch for atrial fibrillation (AF) detection.

transmitter measuring pulmonary fluid content, are under investigation for its ability to predict HF event, and a smarttextile vest with multiple electrodes measuring similar parameters to HeartLogic (heart rate, heart rate variability, respiratory rate, and thoracic impedance) is also under study.^{39,40} Big data analysis will be required to determine whether such algorithms can be used to trigger an appropriate intervention to prevent the need for HF hospitalizations.

PSYCHOSOCIAL SUPPORT USING TELEMEDICINE-BASED COUNSELING IN HEART FAILURE

Artificial intelligence-enabled psychological support plays a large role in RM of HF patient cohort. Interactive voice response (IVR) allows patients to communicate with clinicians asynchronously using a mobile or landline telephone. Based on their responses, the patients can receive tailored feedback during the same call from the physician and also facilitate peer-to-peer support among older adults with HF by contacting them once a week using a toll-free IVR phone system.⁴¹ Studies have noted positive effects and an improvement in depressive symptoms. In a study of HF patients using IVR by Zan et al., it was found that HF-related quality of life (QOL) scores improved from baseline in almost all participants, with the latter feeling more connected to their healthcare provider team. Studies by Clark et al. demonstrated a high acceptability rate of 78% for IVR system-(IVRS)-based technologies, especially in elderly patients due to increased engagement and support that may alleviate loneliness and social isolation.

There is ample evidence today for the benefit in HF patients accruing from tele-based psychological support and counseling. The BEAT-HF (Better Effectiveness After Transition-Heart Failure) study by Ong et al. in 2016 offered detailed HF patient education and counseling on medicines prior to hospital discharge to the patient and family, regularly scheduled telephone coaching, and home telemonitoring of symptoms and concluded that telephone support improved the QOL for patients 180 days after hospital discharge.⁴² Kolasa et al. in 2020 have shown that telephone contact to a trained nurse with access to a family physician can prevent hospitalization in a quarter of HF patients. In a multisite RCT of the CASA (Collaborative Care to Alleviate Symptoms and Adjust to Illness) intervention by Bekelman et al. in 2018, it was found that secondary outcomes of depression and fatigue, both difficult symptoms to treat in HF, did improve by telecounseling.43 In yet another RCT by Pekmezaris in 2018 that compared telemedicine versus a comprehensive outpatient management program, there was a demonstrated reduction in both anxiety and depression over the study period of 90 days.⁴⁴ Koehler et al., in the TIM-HF2 (Telemedical Interventional Management in Patients with Heart Failure) study in 2018, studied the efficacy of a structured remote patient management intervention in HF patients-there was significant improvement in the OOL and reduction in the rate of lost days due to unplanned hospital admissions for cardiovascular causes and mortality from any cause.⁴⁵ Studies by Mao-Huan et al. and Kuan et al. found that HF patients who received diet, medication, and lifestyle teaching via real-time IVRS with nurses improved their mental health status, QOL scores, and decreased rehospitalization over a 1-year period.46,47

BARRIERS TO "BLANKET APPLICATION" OF DIGITAL TECHNOLOGY FOR HEART FAILURE PATIENTS

Healthcare is human science and technology ought to reflect the clinical nature of it. Technology firms marketing health apps and wearable devices "sell" their products online as "health and wellness" products rather than tools for disease management. Currently, there is no clinical regulatory authority checking their claims and accuracy and few RCTs have validated their use in large-scale populations—for the common man, they are more appealing and fancier than the need to be truly reflective of devices used for improving healthcare status.⁴⁸ "Black-box decisions" made by programs such as IBM Watson could not explain clinical real-life events, leading to their questionability. Artifacts during recording or transmission add to fear and confusion, impeding their wider applicability, especially for AF detection. Privacy policies and legalities involved due to data protection regulations of many medical apps and wearables may not meet standards set for data storage, control, and processing by the Food and Drug Administration (FDA).^{13,49} Incorporating wearable data into electronic health records needs a dedicated and savvy workforce since it requires manual input.

Second Big Barrier in the Sustainability of this Healthcare System^{49,13}

Digitalization and use of technology comes with a cost the "COST"!! Teleconsultation following the detection of an abnormal rhythm or alert is associated with a significant start-up cost for equipment and requires personnel training and software licenses. Following the COVID-19 pandemic, there has been a big push on this front, but still RM systems need to prove themselves on both counts, clinical and cost-effectiveness, in different healthcare settings, both in nations where third-party payment for healthcare facilities is the norm and in countries such as India where it is not and patients pay out of their pocket for the same.

KEY POINTS

• HF cohort is an ever-increasing population with continuing research happening into its myriad etiologies, early diagnosis, treatment, and avenues for home monitoring after discharge.

- AI- and ML-based HF diagnoses using AI-CDSS and DL with convolutional neural networks for image analysis are other exciting topics of ongoing research.
- The use of drugs such as ARNI and sodium-glucose cotransporter-2 inhibitors (SGLT-2Is) and electronic devices for HF management have thrown up new vistas; wearables for HF monitoring should be accurate and used more than just fancy gadgetry.
- RM with devices such as ReDS and IIM are on the horizon for clinical use.
- Eventual patient management should remain in clinical domain with digital technology playing a supportive role for the same.

CONCLUSION

Digital health technologies have emerged as potentially useful tools to complement HF care in both research and clinical realms. As they continue to play an increasing role in transforming healthcare delivery at the patient bedside by allowing RM facilities and bringing healthcare at the patient bedside after discharge, they are also creating their own framework for effective use. Regulatory practices will certainly be essential to ensure that digital health applications maintain accuracy and patient privacy along with consistently improving outcomes and enhancing care for HF patients. They should not encroach upon clinical sensibilities of the treating physicians by always keeping in mind that medicine is eventually a science on humans and not tech gadgetry.

ONLINE REFERENCES

Please scan the QR code provided at the end of the table of contents for References of this chapter.

Cardiological Society of India CARDIOLOGY UPDATE 2023

In recent years, the field of cardiology has witnessed remarkable advancements that have revolutionized the management of cardiovascular diseases. The development of wearable devices, smartphone applications, and telemedicine platforms has made remote monitoring and management of cardiovascular conditions a reality. Minimally invasive procedures such as transcatheter aortic valve replacement (TAVR), transcatheter mitral valve replacement (TMVR), MitraClip, and imaging-guided coronary intervention have revolutionized the treatment outcomes.

This book aims to provide a comprehensive overview of these recent advances in cardiology. Our esteemed contributors, who are renowned experts in their respective areas, have meticulously examined the latest evidence and shared their invaluable insights in the book. It is our sincere hope that this book will benefit all of us.

Editor-in-Chief

Pratap Chandra Rath MD DM FICC FACC FESC FRCP (London) FRCP (Edinburgh) Senior Consultant Cardiologist and HOD Department of Cardiology Apollo Hospital, Jubilee Hills Hyderabad, Telangana Apollo Hospital Bhubaneshwar, Odisha, India

Co-Editors

Manoj Kumar Agarwala MD (PGI) DM (PGI) FACC Consultant Cardiologist Department of Cardiology Apollo Hospital, Jubilee Hills, Hyderabad, Telangana, India

Sundar Chidambaram

MD DNB DM FNB Senior Consultant Interventional Cardiologist Kauvery Hospital, Chennai, Tamil Nadu, India

Shabbir Ali Shaik

MD DM FNB Fellow Interventional Cardiologist Department of Cardiology Apollo Hospital, Jubilee Hills, Hyderabad, Telangana, India

Cover design & painting by Prof (Dr) JP Das, Cuttack

Printed in India

Available at all medical bookstores or buy online at www.jaypeebrothers.com

JAYPEE BROTHERS Medical Publishers (P) Ltd. EMCA House, 23/23-B, Ansari Road, Daryaganj, New Delhi - 110 002, INDIA www.jaypeebrothers.com

Join us on f facebook.com/JaypeeMedicalPublishers

