

FETAL HEART

Screening, Diagnosis and Intervention

Editors
Cihat Şen
Milan Stanojevic

Foreword **Asim Kurjak**

Contents

1.	Human Cardiovascular System Development and Cardiac Morphogenesis1			
	Emre Zafer			
	• Partitioning: Atrioventricular Canal and Atria 1			
	• Ventricular Partitioning 2			
	• Sinus Venosus 3			
	• Development of Outflow Tract 3			
	• Development of Cardiac Valves 4			
	• Development of Cardiac Conduction System 4			
	• Development of Outflow Tract 3			
	• Development of Fetal Vascular System 5			
	• Cardiac Morphogenesis 6			
2.	Epidemiology of Congenital Heart Disease: Incidence, Etiology and Pathogenesis9			
	Olus Api			
	Etiology and Pathogenesis 10			
	Other Risk Factors 11			
3.	What is Different in Fetal Heart Examination and			
	Echocardiography?18			
	Olus Api			
	• The Technique of Fetal Heart Examination 19			
	• The Technique of Fetal Echocardiography 21			
4.	Fetal Heart Examination26			
	Cihat Şen, Murat Yayla			
	• Incidence of Congenital Heart Disease 27			
	• Risk Factors for Congenital Heart Disease 28			
	• Fetal Laterality 39			
	• Four-Chamber View 42			
	• Three-Vessel and Trachea (3VT) View 44			
5.	Fetal Cardiac Anomalies53			
	Cihat Şen, Orhan Uzun, Gökhan Göynümer			
	Fetal Cardiac Anomalies 56			

6.	Doppler Ultrasound and its Use in Obstetrics124				
	Talat Umut Kutlu Dilek				
	• Uteroplacental Compartment 126				
	• Fetoplacental Compartment 130				
	 Major Applications of Doppler US in the Obstetric Practice 147 				
7.	Fetal Cardiac Function in Normal and Growth-				
	Restricted Fetuses156				
	Halil Gursoy Pala				
	 The Physiology of Fetal Heart and Cardiovascular System 156 				
	• Changes in the Shape of the Heart and the Cardiac Function 157				
	• Assessment of the Fetal Heart Function 158				
	• The Pathophysiology of Fetal Heart and Cardiovascular System in Growth-Restricted Fetuses 159				
	• Identifying FGR 160				
	• Cardiovascular Adaptations in FGR 160				
	• Vascular Remodeling in FGR 161				
	• Cardiac Remodeling in FGR 161				
8.	Circulation in the Normal Fetus and Cardiovascular				
	Adaption167				
	Talat Umut Kutlu Dilek				
	• Blood Flow from the Placenta to the Fetus 167				
	• The Heart and Beyond 170				
	• Aortic Isthmus 172				
	• Pulmonary Circulation 173				
	• Functional Difference from the Postnatal Life 173				
	• Cardiovascular Adaptations to Birth 174				
9.	Twin-Twin Transfusion Syndrome: Impact on the				
	Cardiovascular System178				
	Halil Gursoy Pala				
	 Pathophysiology of Twin-Twin Transfusion Syndrome (TTTS) 178 				
	• Cardiovascular Changes in TTTS 180				
	• Diagnosis and Stages of TTTS 182				
	• Cardiovascular Score in TTTS 182				
	• Screening and Prediction for TTTS 184				

	• Differential Diagnosis 184		
	• Treatment and Implication on the Cardiovascular		
	System in TTTS 185		
	• Long-term Cardiovascular Effects of TTTS 186		
10.	The New 3D/4D-based Spatio-Temporal Imaging		
	Correlation in Fetal Echocardiography:		
	A Promising Tool for the Future191 Badreldeen Ahmed		
	A 1D:		
	 Spatio-Temporal Imaging Correlation 192 Acquisition of 3D Volume 192 		
	Fetal Cardiac Volume Analysis 193		
	•		
11. HDliveFlow for Fetal Heart			
	Toshiyuki Hata Normal Fetal Heart 201		
	• Congenital Heart Disease 210		
12.	Cardiomyopathy in the Fetus218 Ebru Tarım		
	Dilated Cardiomyopathies 219		
	 Hypertrophic Cardiomyopathies 220 		
10			
13.	Diagnosis and Management of Fetal Arrhythmias223 Orhan Uzun, Gökhan Göynümer, Cihat Şen		
	Fetal Heart Rate Ranges 223		
	How Frequent and Clinical Types? 223		
	The Timing and Mode of Presentation of		
	Fetal Arrhythmia 224		
	• Atrial Ectopic Beats (Premature Atrial Contractions) 225		
	• Ventricular Ectopic Beats (Premature Ventricular		
	Contractions) 228		
	Bradycardia and Heart Block 233		
	• Fetal Atrioventricular Block 233		
	• Fetal Tachycardia 236		
	• Ventricular Tachycardia 243		
14.	Congenital Heart Disease and Associated Syndromes247		
	Sertaç Esin		
	Alagille Syndrome 247		
	• Holt-Oram Syndrome 249		

	•	Charge Association 249	
	•	Noonan Syndrome 249	
	•	Vacterl Association 249	
	•	Williams Syndrome 249	
	•	22q11 Deletion Syndrome 250	
15.	Serta •	Atrioventricular Septal Defects 253 Ventricular Septal Defects 253 Conotruncal Anomalies 255	251
	•	Coarctation of the Aorta 255	
		Hypoplastic Left Heart Syndrome 255 Heterotaxy 256	
		•	
16.		netic Counseling for Congenital Heart Defects2 aç Esin	259
	•	Nonsyndromic CHD 260	
	•	Syndromic CHD 263	
17.		tnatal Follow-up after Fetal Echocardiography2	267
	•	Epidemiology and Public Health Relevance of Congenital Heart Disease 267	
	•	Significance of Early Diagnosis of Critical CHD 269	
	•	Success Rate of the Screening for Critical CHD 270	
	•	Barriers and Obstacles to the Screening of Critical CHD 277	
		Diagnostic Value of the Early/Timely Diagnosis of Critical CHD 282	
		Risk Stratification, Perinatal and Delivery Room Management after Fetal Echocardiography 283	
	•	Short-term and Long-term Outcome after Diagnosis of Critical CHD 286	
T., J.			20'

3

What is Different in Fetal Heart Examination and Echocardiography?

Olus Api

Worldwide, 1.35 million infants are born with congenital heart disease (CHD) each year, with a worldwide occurrence of 7 per 1,000 live births. Among the CHDs, at least 50% of cardiac malformations are minor and have little long-term consequences for the developing child. The remaining 50% are major or critical CHDs. Most critical CHDs typically require early neonatal intervention due to closure of the ductus arteriosus in ductus-dependent lesions or inadequacy of the foramen ovale for oxygenation or cardiac output. It is well known that 25% of deaths due to CHD occur before the diagnosis of CHD in the first week of life. Therefore, prenatal detection of critical CHDs may help to enhance perinatal counseling and delivery planning. Additionally, several reports have shown that an improved outcome is associated with prenatal diagnosis for specific types of major CHD. Therefore, many major cardiac malformations are associated with chromosome abnormalities, genetic syndromes or are part of a multiple malformation disorder.

It is well known that 25% of deaths due to CHD occur before the diagnosis of CHD in the first week of life. The concept of prenatal screening for CHD was introduced in the United Kingdom in 1986. Following this introduction, the French study recommended incorporation of the four-chamber view of the heart into the routine obstetric scan performed at 18–22 weeks of gestation. Consequently, a concentrated screening program was set up in 10 obstetric centers in the south-east Thames region in 1988, which showed that some forms of major CHDs might be detected by examining the four-chamber view of the heart during routine obstetric scan.

Although the four-chamber view examination has been shown to be an effective method of detecting some of the critical CHDs in utero, this will not be able to detect all major forms of CHD such as double-outlet right ventricle (DORV), tetralogy of Fallot (TOF), transposition of the great arteries (TGA) and truncus arteriosus. ¹⁰⁻¹² It was shown that adding ventricular outflow tract views to the four-chamber view of the heart at routine fetal anomaly scans at >18 weeks is the most effective technique to detect CHD prenatally. ¹³ Similarly, it has also been shown by that including examination of the arterial

Ch02 indd 10

connections of the heart would improve the detection rate. 14,15 Although the previous formal guidelines recommended including the outflow tract views to the four-chamber view when technically feasible, the current guidelines emphasize that the cardiac screening examination of the fetus should include both the four-chamber view and outflow tract views.¹⁶⁻¹⁸ Additional crosssectional views which include the three-vessel (3V) view and the three-vessel and trachea (3VT) view may show different aspects of the great vessels and surrounding structures. The 3V view which has been proposed by Yoo et al. includes the transverse view of the fetal upper mediastinum.¹⁹ It can be easily obtained by moving the transducer cephalad from the four-chamber plane. However, the aortic arch and trachea were not included in this view. Later on, Yagel et al. demonstrated the clinical applicability of the 3VT view, a transverse view of the upper mediastinum slightly cranial to the original 3V view, to evaluate the anatomy of the major vessels in the mediastinum.²⁰ The 3VT view demonstrates the main pulmonary trunk in direct communication with the ductus arteriosus, a transverse section of the aortic arch and the superior vena cava (SVC) from left to right and a cross-section of the trachea is visualized posterior to and between the great arteries and SVC. Yagel et al. suggested the integration of all these views in a sequential segmental approach to the diagnosis of CHD.²¹ The five axial views for the fetal heart examination include the transverse section of the upper abdomen to demonstrate the relation of aorta and inferior vena cava (IVC), four-chamber view of the heart, left ventricular outflow tract view, right ventricular outflow tract view along with 3V view and the 3VT view.

THE TECHNIQUE OF FETAL HEART EXAMINATION

Basic cardiac structures that should be evaluated for fetal heart examination are as follows:

- 1. General inspection:
 - Atrial and abdominal situs
 - Fetal laterality
 - Heart occupies a third of thoracic area
 - Cardiac apex points to left by 45° ± 20°
 - Four chambers present
 - Regular cardiac rhythm
 - No pericardial effusion
- 2. Evaluation of atria (mandatory):
 - Two atria, approximately equal in size
 - Foramen ovale flap movement from right atrium to left atrium
 - Atrial septum primum present (near to crux)
 - At least two pulmonary veins entering left atrium
- 3. Evaluation of ventricles (mandatory):
 - Two ventricles, approximately equal in size

- No ventricular wall hypertrophy
- Right ventricle with the moderator band is situated at the fetal right side and oval shaped left ventricle at the fetal left side
- Ventricular septum intact (apex to crux)
- 4. Evaluation of atrioventricular junction and valves (mandatory):
 - Intact cardiac crux
 - Two atrioventricular valves open and move freely
 - Tricuspid valve leaflet more apical insertion on the ventricular septum compared to mitral valve
- 5. Evaluation of left ventricular outflow tract view (mandatory):
 - Continuity between the interventricular septum and the anterior wall of aorta
 - Aortic valve should not be thickened and move freely
- 6. Evaluation of right ventricular outflow tract view (mandatory):
 - Pulmonary artery (PA) should be crossing over the aorta
 - The bifurcation of the PA into both pulmonary branches should be seen
 - The pulmonary valve should not be thickened and move freely
- 7. Evaluation of 3VT view (mandatory):
 - The main pulmonary trunk in direct communication with the ductus arteriosus, a transverse section of the aortic arch and the SVC should be aligned from left to right, anterior to posterior and from larger to smaller size
 - ◆ Both the aortic arch and the ductal arch should be located to the left of the trachea, in a "V"-shaped configuration
 - Any abnormality in vessel size, alignment, arrangement and number should be noted

We recommend the fetal heart examination to maximize the detection of heart anomalies during a second-trimester scan in all fetuses and this examination should be an integral part of routine prenatal care. The fetal heart examination should be used in the evaluation of all fetuses carrying low risk for CHD. This kind of approach will help also to identify fetuses at risk for genetic syndromes and provide useful information for patient counseling and obstetric management. The fetal heart examination should optimally be performed between 18 and 22 weeks' gestational age as recommended by many formal guidelines. 14-18 The examination should include a transverse sweep with cephalad movement of the transducer from the fetal abdomen (at the level of the standard abdominal circumference) through the fourchamber view and toward the upper mediastinum to visualize the left and right ventricular outflow tract views together with 3V and 3VT views. Real-time gray-scale sonography is the required modality for the fetal heart examination. Fetal heart examination is usually obtained when the cardiac apex is directed toward the anterior maternal wall. Maternal obesity, abdominal scars and

prone fetal position can make the fetal heart examination difficult due to acoustic shadowing. It may be necessary to examine the patient at a different time if the heart is poorly visualized. Optimization of the images such as image magnification, frame rate, focus and frequency selection, gain intensity, is almost always recommended on a minimum basis. System settings should emphasize a high frame rate, with increased contrast and high resolution.

THE TECHNIQUE OF FETAL ECHOCARDIOGRAPHY

Suspected heart anomalies on the fetal heart examination will require more comprehensive evaluation using fetal echocardiography. One of the main goals for a fetal echocardiography is to confirm the presence or absence of cardiac disease. If this scan is abnormal, the examiner should characterize these abnormalities, make a differential diagnosis of the most probable defects, and identify fetuses that will require immediate medical or surgical intervention following delivery.²² Real-time gray-scale sonography, complementary spectral and color Doppler ultrasound are important components of the fetal echocardiography. 22,23 Continuous-wave Doppler sonography may be sometimes necessary to quantify very high velocity flow across stenotic or incompetent valves such as in critical aortic stenosis. Occasionally, M-mode echocardiography, three-dimensional (3D) and four-dimensional (4D) ultrasonography and advanced techniques may be required to evaluate fetal cardiac function using measurements of ventricular shortening fraction, stroke volume, cardiac output, PR intervals, left and right ventricular Tei indices.22-24

Indications for fetal echocardiography are often based on a variety of parental and fetal risk factors for CHD.^{23,25,26} However, most cases are not associated with any maternal or fetal risk factors. Common indications for fetal echocardiography include but are not limited to the following:^{22,23}

1. Maternal indications:

- Family (maternal, paternal, sibling) history of CHD
- Metabolic disease (e.g. diabetes mellitus and phenylketonuria)
- Teratogen exposure (e.g. retinoids and lithium).
- Autoimmune antibodies, anti-Ro (SSA)/anti-La (SSB)
- In vitro fertilization

2. Fetal indications:

- Abnormal fetal heart examination (abnormal cardiac axis, abnormal cardiac position, abnormal four-chamber view, abnormal outflow tract views, abnormal 3V and 3VT views)
- Abnormal heart rate or rhythm
- Fetal chromosomal anomaly
- Fetal extracardiac anomaly
- Fetal hydrops

- Increased nuchal translucency
- Abnormal ductus venosus waveform
- Monochorionic twins

Among these indications, abnormal fetal heart examination carries the highest risk for the fetus for having a CHD. Therefore, the fetal heart examination should be offered to all second-trimester fetuses without any known risk factor for having a CHD.

Fetal echocardiography is commonly performed between 18 and 22 weeks' gestational age. Some forms of CHD may even be recognized during earlier stages of pregnancy. Fetal nuchal translucency measurement screening programs and the developing technology in ultrasound have created a new population of at-risk pregnancies that will be referred for early fetal echocardiography performed between the 12th and 16th week of pregnancy. Early detailed assessment of the fetal heart requires a high level of expertise in early anomaly scanning and fetal echocardiography. The use of transvaginal ultrasound and complementary Doppler ultrasound are the modalities which help to improve the detection rate for early fetal echocardiography. However, there still remains some limitations of fetal echocardiography in the first trimester and follow-up at second-trimester echocardiography may be required in most of the cases.

Fetal echocardiography is usually obtained when the cardiac apex is directed toward the anterior maternal wall—similar to routine fetal heart examination. Optimization of the images may again be needed such as image magnification, frame rate, focus, frequency selection, gain intensity, compound and harmonic imaging and Doppler-adjustments such as color-box scale, pulse-repetition frequency scale, wall motion filtering may be required to be established in every individual examination.

As a minimum, fetal echocardiography involves a thorough examination of the fetal heart by sequential segmental analysis.²⁷ The examiner should confirm anatomical relationships and functional flow characteristics through a systematic analysis of cardiac axis and situs, ventricular morphology, pericardial effusions, venous-atrial, atrioventricular and ventriculoarterial connections of the heart, size and relationships of the left and right ventricular outflow tracts, ductal and aortic arches, interventricular septum, atrial septum, atrial chamber size and foramen ovale and atrioventricular and semilunar valves flow across each heart connection, as seen with Doppler flow mapping.^{22,23,27} These anatomical structures are usually evaluated using both transverse and sagittal views. Two-dimensional (2D) measurements of cardiac chambers or vessels are may also be required in order to interpret findings when compared against expected values. *Z*-scores may be used to improve the interpretation of cardiac measurements.^{22,28}

Basic cardiac structures that should be evaluated for fetal echocardiography are as follows:

- 1. Evaluation of four-chamber view (as described for fetal heart examination):
 - Evaluation of color Doppler sonography of systemic veins (including SVC and IVC and ductus venosus) (mandatory)
 - Evaluation of color Doppler sonography of pulmonary veins (mandatory)
 - Evaluation of color Doppler sonography of foramen ovale (mandatory)
 - Evaluation of color Doppler sonography of atrioventricular valves (mandatory)
 - 2D measurements of mitral valve and tricuspid valve (optional)
- 2. Evaluation of color Doppler sonography of atrial and ventricular septa
- 3. Evaluation of the left ventricular outflow tract (as described for fetal heart examination):
 - Evaluation of color Doppler sonography of aortic valve (mandatory)
 - 2D measurements of aortic valve (mandatory)
- 4. Evaluation of the right ventricular outflow tract (as described for fetal heart examination):
 - Evaluation of color Doppler sonography of PA valve (mandatory)
 - 2D measurements of PA valve (mandatory)
- 5. Evaluation of the 3VT view (as described for fetal heart examination)
- 6. Evaluation of short-axis views ventricles, aorta and PA (mandatory)
- 7. Evaluation of aortic arch view (sagittal view optional if satisfactory 3VT views are obtained):
 - Evaluation of color Doppler sonography of aortic arch
- 8. Evaluation of ductal arch view (sagittal view optional if satisfactory 3VT views are obtained):
 - Evaluation of color Doppler sonography of ductal arch
- 9. Evaluation of SVC and IVC views (mandatory).

REFERENCES

- 1. Van der Bom T, Bouma, BJ, Meijboom FJ, et al. The prevalence of adult congenital heart disease, results from a systematic review and evidence-based calculation. Am Heart J. 2012;164:568–75.
- 2. Kuehl KS, Loffredo CA, Ferencz C. Failure to diagnose congenital heart disease in infancy. Pediatrics. 1999;103:743–7.
- 3. Bonnet D, Coltri A, Butera G, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation. 1999;99:916–8.
- 4. Andrews RE, Tulloh RMR, Sharland G, et al. The Norwood procedure for hypoplastic left heart syndrome (HLHS): outcome following antenatal and postnatal diagnosis. Arch Dis Child. 2001;83:245–9.

20 0E 2010 14:19:

- Copel JA, Tan AS, Kleinman CS. Does a prenatal diagnosis of congenital heart disease alter short term outcome? Ultrasound Obstet Gynecol. 1997;10:237–4.
- 6. Allan L, Benacerraf B, Copel JA, et al. Isolated major congenital heart disease. Ultrasound Obstet Gynecol. 2001;17(5):370–9.
- 7. Copel JA, Tan AS, Kleinman CS. Does a prenatal diagnosis of congenital heart disease alter short term outcome? Ultrasound Obstet Gynecol. 1997;10:237–4.
- 8. Allan LD, Crawford DC, Chita SK, et al. Prenatal screening for congenital heart disease. Br Med J. 1986;292:1717-9.
- Fermont L, De Geeter B, Aubry MC, et al. A close collaboration between obstetricians and cardiologists allows antenatal detection of severe cardiac malformations by 2D echocardiography [abstract]. In: Doyle EF, Engle MA, Gersony WM, Rashkind WJ, Talner NS, (Eds). Pediatric cardiology. Proceedings of the Second World Congress of Paediatric Cardiology. New York: Springer; 1986. p. 34–7.
- Sharland GK, Allan LD. Screening for congenital heart disease prenatally. Results
 of a 2 1/2-year study in the South East Thames Region. Br J Obstet Gynaecol.
 1992;99:220-5.
- 11. Vergani P, Mariani S, Ghidini A, et al. Screening for congenital heart disease with the four chamber view of the fetal heart. Am J Obstet Gynecol. 1992;167:1000–3.
- 12. Yagel S, Cohen SM, Achiron R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet Gynecol. 2001;17(5):367–9.
- 13. Carvalho JS, Mavrides E, Shinebourne EA, et al. Improving the effectiveness of routine prenatal screening for major congenital heart defects. Heart. 2002;88:387–91.
- 14. Wigton TR, Sabbagha RE, Tamura RK, et al. Sonographic diagnosis of congenital heart disease: comparison between the four-chamber view and multiple cardiac views. Obstet Gynecol. 1993;82;219–24.
- 15. Kirk JS, Riggs TW, Comstock JH, et al. Prenatal screening for cardiac anomalies: the value of routine addition of the aortic root to the four chamber view. Obstet Gynecol. 1994;84:427–34.
- 16. International Society of Ultrasound in Obstetrics and Gynecology. Cardiac screening examination of the fetus: guidelines for performing the "basic" and "extended basic" cardiac scan. Ultrasound Obstet Gynecol. 2006;27:107–13.
- 17. Abuhamad AZ; American College of Obstetricians and Gynecologists Committee on Practice Bulletins-Obstetrics. ACOG Practice Bulletin, clinical management guidelines for obstetrician-gynecologists, number 98, October 2008: ultrasonography in pregnancy. Obstet Gynecol. 2008;112:951–61.
- 18. International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, Chaoui R, Copel JA, DeVore GR, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348–59.
- 19. Yoo SJ, Lee YH, Kim ES, et al. Three-vessel view of the fetal upper mediastinum: an easy means of detecting abnormalities of the ventricular outflow tracts and great arteries during obstetric screening. Ultrasound Obstet Gynecol. 1997;9:173–83.
- 20. Yagel S, Arbel R, Anteby EY, et al. The three vessels and trachea view (3VT) in fetal cardiac scanning. Ultrasound Obstet Gynecol. 2002;20:340–5.
- 21. Yagel S, Cohen SM, Achiron R. Examination of the fetal heart by five short-axis views: a proposed screening method for comprehensive cardiac evaluation. Ultrasound Obstet Gynecol. 2001;17:367–9.
- Lee W, Allan L, Carvalho JS, et al. ISUOG Fetal Echocardiography Task Force. ISUOG
 consensus statement: what constitutes a fetal echocardiogram? Ultrasound Obstet
 Gynecol. 2008;32(2):239-42.

20.05.2010, 14:12:07

- 23. AIUM Practice Parameter. Fetal echocardiography. American Institute of Ultrasound in Medicine; 2013.
- 24. DeVore GR. Assessing fetal cardiac ventricular function. Semin Fetal Neonatal Med. 2005;10:515-41
- Small M, Copel JA. Indications for fetal echocardiography. Pediatr Cardiol. 2004;25:210-22.
- Olson CK, Kepper-Noreuil KM, Romitti PA, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84:1308–15.
- 27. Carvalho JS, Ho SY, Shinebourne EA. Sequential segmental analysis in complex fetal cardiac abnormalities: a logical approach to diagnosis. Ultrasound Obstet Gynecol. 2005;26:105–11.
- 28. Schneider C, McCrindle BW, Carvalho JS, et al. Development of Z-scores for fetal cardiac dimensions from echocardiography. Ultrasound Obstet Gynecol. 2005;26:599–605.

20.0E.2010, 14:12:27

FETAL HEART

Screening, Diagnosis and Intervention

Salient Features

- Congenital anomalies are the greatest contributor to the infant death and congenital heart diseases (CHDs) account for up to 50% of these deaths
- Congenital heart diseases with the highest incidence of extracardiac abnormalities (>25%) included heterotaxy, single left ventricle
 and tricuspid atresia, hypoplastic left heart syndrome, and tetralogy of Fallot (TOF)
- · Congenital heart disease is the most common type of birth defect, accounting for one-third of all major congenital anomalies
- For the clinicians and families, the major or critical cardiac defects carry the utmost importance since they may be either lethal or may require intervention in infancy of long-term follow-up
- About 1.35 million infants are born with CHD each year, with a worldwide occurrence of 7 per 1,000 live births
- · Prenatal detection of critical CHDs may help to enhance perinatal counseling and delivery planning
- The fetal heart examination should be used in the evaluation of all fetuses carrying low risk for CHD
- The fetal heart examination to maximize the detection of heart anomalies during a second-trimester scan in all fetuses and this examination should be an integral part of routine prenatal care.

Cihat Şen MD is the Founder and Professor, Department of Perinatal Medicine, Obstetrics and Gynecology, Cerrahpaşa Medical School, University of Istanbul, Turkey. He has been one of and successful to establish the subspecialty of perinatal medicine officially in Turkey. He has been actively giving lectures for medical students and also training for postgraduate students in the university. He is the Founder of and has been actively managing Perinatal Medicine Foundation since 2010, the Turkish Society of Perinatal Medicine since 1982, and Turkish Society of Ultrasound in Obstetrics and Gynecology since 1998. He is the Editor-in-Chief of the Perinatal Journal since 1993. He is the first pioneer and still actively doing fetal surgery and also providing training on fetal surgery as a postgraduate training program.

He is the President of the World Congress of Perinatal Medicine in Istanbul and the World Association of Perinatal Medicine and the board member since 2008, the regular Fellow of the International Academy of Perinatal Medicine, the Member of the International Council of Fetus as a Patient, the Director, World School of Perinatal Medicine, and the Director, Turkish Branch of Ian Donald Ultrasound School.

He devoted his time on teaching activity and research on fetal surgery, prenatal diagnosis, fetal anomaly, pre-eclampsia, intrauterine growth retardation, diabetes in pregnancy, fetal transfusion, fetal shunting, laser surgery, fetoscopic intervention, and recently fetal spine surgery. He published national and international books, chapters, and research papers in national and international peer-reviewed journals.

He is recently established and the Director of the Perinatal Medicine Center, Memorial Bahçelievler Hospital, Istanbul, Turkey. He is routinely organizing the National Congress of Perinatal Medicine and the National Congress of Ultrasound in Obstetrics and Gynecology. Continuing program for the postgraduate training course is the World School of Perinatal Medicine under his leadership recently.

Milan Stanojevic MD PhD is the Head, Department of Neonatology, Medical School, University of Zagreb, Sveti Duh Clinical Hospital, Zagreb, Croatia since 2007. He is an Associate Professor, Dubrovnik International University since 2011 and an Assistant Professor, Pediatrics at the Faculty of Teacher's Education, University of Zagreb since 2013. Member and from 2007 to 2011, Secretary General of the World Association of Perinatal Medicine, Vice President of WAPM from 2011, President Elect from 2013, and President of WAPM from 2015. He is the Board Member of the Fetus as a Patient Society since 2008, Associate Fellow of the International Academy of Perinatal Medicine (IAPM) since 2008, regular Fellow of IAPM since 2014, Fellow of the European Academy of Sciences and Arts since 2014, and Member of the Board of Croatian Perinatal Association. He is involved as a Member of the organizing committees and Vice President and Member of Scientific Committees of national and international meetings. He has been awarded with William Liley Medal by Fetus as a Patient Society (2011) and Ladislav Rakovac Award by Croatian Medical Association (2008). He is a Visiting Professor, Weill Cornell Medical University, New York, USA and Honorary Professor, Pirogov Russian National Research Medical University, Medical Institute of State University in Surgut, Russia, and Kuban State Medical University, Russia. He has published 268 papers (121 journal and 147 conference papers), more than 40 conference papers without publication as invited speaker, with more than 1,250 citations and H-index 15 (15 papers cited at least 15 times). He has written 43 chapters in the books and edited 5 books. He is a Member of editorial board of two journals and a Reviewer of 10 journals. He has been participating in several research scientific projects (follow-up of high-risk infants, fetal hypoxia, and fetal neurology) and is recently participating as the Senior Researcher in the scientific project, Cerebro-Umbilical Ratio and Motor Parameters in Prevention o

Available at all medical bookstores or buy online at www.jaypeebrothers.com

Join us on ffacebook.com/JaypeeMedicalPublishers

Shelving Recommendation CARDIOLOGY

