

Biochemistry Laboratory Manual

(Based on Kathmandu University Syllabus)

Arti S Pandey Arun Pandey Naveen K Shreevastva Durga P Neupane

Contents

	MBBS I	
Experiment	 1: Use of Micropipettes Introduction 3 Use 3 Procedure for micropipetting 4 Checking your pipetting skill 5 	3
Experiment	2: Buffers and pHIntroduction 7pH meter 8	7
Experiment	 3: Qualitative tests for Carbohydrates Introduction 11 Reactions of monosaccharides, disaccharides and polysaccharides 11 	11
Experiment	 4: Qualitative Tests for Proteins Introduction 20 Biuret reaction (general test for protein) Heat coagulation test 21 Precipitation by salt solution (ammonium sulfate) 21 	20 20
Experiment	 5: Separation of Serum Proteins by Gel Electrophoresis • Introduction 25 • Principle 26 • Quantitation 27 • Hyperproteinemias 28 • Hypoproteinemias 28 	25
Experiment	 6: Principles of Colorimetry Introduction 32 The photoelectric colorimeter 33 	32

		٠
VI	1	1

1111 210 01101111	2001/ 20001001/ 1/2011001 101 1/12/20 (1 0110 11)
	• Verification of Beer-Lambert's law using bromophenol blue <i>34</i>
Experiment	 7: Estimation of Serum Total Protein and Determination of Albumin to Globulin Ratio 38 Introduction 38
	 Principle 38 Reagents 38 Procedure 39 Observation 39 Calculation 39 Normal range (adults) 40
Experiment	 8: Genomic DNA Isolation, Amplification of the D1S80 Locus and DNA-Gel Electrophoresis 42 Introduction 42
	 Materials and methods 43 The D1S80 locus 44 Gel electrophoresis and DNA fragment analysis 46
Experiment	9: Estimation of Blood Glucose by GOD-POD Method 49
	 Introduction 49 Principle 49 Specimen collection 49 Reagents 50 Sample collection 50 Procedure 50 Observation 50 Normal range (serum/plasma glucose) 51 Comment on the result 51
Experiment 1	0: Estimation of Serum Total Cholesterol by Modified Zak's Method 53
	• Introduction 53

Principle 53Reagents 54

	• Observation 55	
	• Calculation 55	
	• Normal range for serum cholesterol (recom	ım-
	ended by NCEP) 55	
	• Comment on the result 55	
Experiment 11:	Estimation of Serum Triglycerides	57
	• Introduction 57	
	• Principle <i>57</i>	
	• Procedure 57	
	• Observations 58	
	• Calculation 58	
	• Normal values: (A/C to NCEP-ATP II) 58	
	• Comment on the result 59	
Experiment 12:	Estimation of Serum Uric Acid by	
	Caraway's Method	61
	• Introduction 61	
	• Principle 61	
	• Reagents 62	
	• Procedure 62	
	• Observations 62	
	• Calculation 63	
	• Normal range 63	
	• Comment on the result 63	
	MBBS II	
Experiment 13:	Determination of Serum Amylase	
	Activity by Amyloclastic Method	67
	• Introduction 67	
	• Principle 67	
	• Reagents 68	
	• Procedure 68	
	• Normal range 69	
	• Comment on the result 69	

• Procedure 54

	340 014001 / 1/1411441 101 1/12/20 (1 4114 11)
Experiment 14:	Estimation of Serum Aspartate Transaminase (AST) Activity Introduction 71 Principle 71 Reagents 72 Procedure 72 Normal range 73 Comment on the result 73 Estimation of Serum Alanine Transaminase
Experiment 15:	(ALT) Activity 75
	 Introduction 75 Principle 76 Reagents 76 Procedure 76 Observations 77 Calculation 77 Normal range 77 Comment on the result 78
Experiment 16:	Estimation of Serum Bilirubin by Modified
	Jendrassik/Grof Method Introduction 80 Principle 81 Reagents 81 Procedure 81 Observations 82 Calculation 82 Normal range 83 Comment on the result 83
Experiment 17:	Estimation of Serum Urea by Diacetyl Mon-
•	oxime (DAM) Method 87 • Introduction 87 • Principle 88 • Reagents 88

	 Procedure 88 Observation 89 Calculation 89 Normal range 89 Comment on the result 90 	
Experiment 18:	Estimation of Serum Creatinine by Jaffe's Alkaline Picrate Method Introduction 91 Principle 91 Reagents 92 Procedure 92 Observation 92 Calculation 93 Normal range 93 Comment on the result 93 True creatinine 93	91
Experiment 19:	Urinary Creatinine (Jaffe's Method) and Creatinine Clearance Introduction 95 Principle 95 Procedure 95 Observation 96 Calculation 96 Normal range 97 Comment on the result 97 Normal range 98 Comment on the result 98	95
Experiment 20:	 Urinalysis Introduction 101 Physical examination 101 Chemical examination 102 Abnormal chemical constituents 103 	101

Experiment 21:	 Urinalysis (Abnormal Constituents) Physical examination of urine 108 Chemical examination 108 Result 109 Interpretation 109 	108
Experiment 22:	Oral Glucose Tolerance Test (OGTT): Principle and Interpretation Introduction 112 Preparatory phase 112 Procedure 113	112
Experiment 23:	Molecular Diagnosis: Example Sickle Cell Anemia using ASO and RFLP • Introduction 116 • Sickle cell anemia 116	116
Reference Bioch	emical Values	121
Reagents		122

Experiment

Qualitative Tests for Proteins

INTRODUCTION

Normal adults excrete a small amount (upto 160 mg/day) of proteins in urine. This consists of albumin, Tamm-Horsfall protein, some other plasma proteins, glycoproteins, etc. This small amount of protein is not detectable by routine methods. Increased amount of proteins in urine, i.e. proteinuria can be caused by increased glomerular permeability (e.g. albuminuria), reduced tubular reabsorption (e.g. β_2/α_1 microglobulinuria), increased secretion of protein from the renal tract (e.g. Tamm-Horsfall proteinuria) or increased concentration of low molecular weight proteins in the plasma (e.g. Bence Jones proteinuria). Proteinuria may be physiological or pathological. Physiological proteinuria may be seen in last weeks of pregnancy, in severe stress like excessive physical activity, etc. Pathological proteinuria may be seen in conditions such as nephrotic syndrome, pyelonephritis, glomerulonephritis, severe urinary tract infection, etc.

BIURET REACTION (GENERAL TEST FOR PROTEIN)

This test is positive for all compounds containing more than one peptide linkage (tripeptide onwards). All proteins give a positive biuret test.

Principle

Protein reacts with Cu²⁺ ions in alkaline medium to form a blue to violet/purple-colored complex; which is due to formation of co-

ordination complex between Cu⁺⁺ (cupric ions) and peptide bonds of proteins.

Procedure	Observation	Inference
1 ml of protein solution in a		
test tube +1 ml 5% NaOH + 2		
drops of 0.5% copper sulfate		
solution. Mix well		

HEAT COAGULATION TEST

Principle

Proteins lose their solubility in water as the temperature is raised. This is due to a loss of its tertiary structure or "denaturation". When heated directly, a protein solution will show precipitation or solidifying of protein, a process called coagulation. An example is, heating of egg albumin, which coagulates into a solid, opaque mass.

Procedure	Observation	Inference
Fill 2/3rd of test tube with the		
protein solution. Heat upper-		
half of the tube while holding it		
in a tilted position. Cool and add		
2-3 drops of 1% acetic acid		

PRECIPITATION BY SALT SOLUTION (AMMONIUM SULFATE)

The process of protein precipitation by the addition of a neutral salt such as ammonium sulfate is known as salting out. The phenomenon is explained on the basis of dehydration of protein molecules by salts. The cations and anions of salts neutralize the ionic groups on proteins, discouraging interactions with water. This causes increased protein-protein interaction, resulting in molecular aggregation and precipitation. The amount of salt required for protein precipitation depends on the size (molecular

weight) of the protein molecule. In general, the higher the molecular weight of protein, lower is the salt required for precipitation. Larger molecules (e.g. globulins) require half saturation with ammonium sulfate and smaller molecules (e.g. albumin) require full saturation for precipitation.

	Procedure	Observation	Inference
A.	Half saturation test: Take 3 ml protein solution in a test tube and add 3 ml saturated solution of ammonium sulfate. Mix well and keep for 5 min. Filter Perform the biuret test with the filtrate: 1 ml of the filtrate + 1 ml of 40% NaOH + 2 drops of 1% CuSO ₄ solution. Mix well		
В.	Full saturation test with ammonium sulfate and perform biuret test with filtrate: 3 ml specimen + add solid ammonium sulfate till saturated, filter and perform biuret test Biuret test: 1 ml of filtrate + 1 ml of 40% NaOH + 2 drops of CuSO ₄ solution. Mix it well	O	
QU	IESTIONS		
1.	What is denaturation of protein	in?	

Why does albumin require full saturation with ammon um sulfate for precipitation, whereas globulin require half saturation?
Is the presence of albumin in urine normal? Comment.
When do different types of protein appear in urine?

		Explain.		
			Λ	
	O			
/				

Biochemistry Laboratory Manual

This *Biochemistry Laboratory Manual* is meant for students of the MBBS program that is being carried out in the Medical Colleges under Kathmandu University in Nepal. The manual is based upon the Kathmandu University School of Medical Sciences curriculum for MBBS, and complements what is being taught in theory classes. Clinically relevant questions about the experiments that stress application of a biochemical test in diagnosis are included at the end of each chapter. The manual tries to minimize writing on the part of the students, so that they focus on the results of their experiments, with comments on the results themselves as well as their clinical relevance. The book includes exercises on protein and DNA electrophoresis, which can be taught as a demonstration, or carried out by each student on his own blood samples.

All the authors are faculty members at Kathmandu Medical College (Basic Sciences) in Duwakot, Bhaktapur, Nepal, and teach Medical Biochemistry to MBBS, BDS and Nursing students.

Arti S Pandey PhD in Biochemistry from Montana State University, USA, is an Associate Professor and Head of the Department with 11 years of teaching experience at Kathmandu Medical College, Kathmandu, Nepal.

Arun Pandey MSc (Medical Biochemistry) is an Assistant Professor with 6 years of teaching experience at Nepal Medical College, as well as Kathmandu Medical College, Kathmandu, Nepal.

Naveen K Shreevastva MSc (Medical Biochemistry) is a Lecturer and has 7 years of teaching experience at Kathmandu Medical College, Kathmandu, Nepal.

Durga P Neupane MSc (Medical Biochemistry) is a Lecturer with 7 years of teaching experience at Kathmandu Medical College, Kathmandu, Nepal.

Available at all medical bookstores or buy online at www.jaypeebrothers.com

JAYPEE BROTHERS
Medical Publishers (P) Ltd.
www.jaypeebrothers.com

Join us on ffacebook.com/JaypeeMedicalPublishers

Shelving Recommendation BIOCHEMISTRY

