2_{nd} Edition

Essentials in Hematology and Clinical Pathology

Ramadas Nayak Sharada Rai

Foreword K Ramnarayan

Contents

	Disorders of Red Cells	
1.	Introduction Definition 3 Hematopoiesis 4	3
2.	Classification of Anemia Red cell 9 Anemia 10	9
3.	Iron Deficiency Anemia Iron metabolism 14 Iron deficiency anemia 17	14
4.	Metabolism of vitamin B ₁₂ and folic acid 25 Etiology of megaloblastic anemia 28 Laboratory findings of megaloblastic anemia 29 Anemias of vitamin B ₁₂ deficiency 33 Anemia of folate deficiency 38 Nonmegaloblastic causes of macrocytic anemias 39	24
5.	Introduction and Classification of Hemolytic Anemia Hemolytic anemia 43 Classification of hemolytic anemias 49	41
6.	Hemolytic Anemias due to Red Cell Membrane Disorders Hereditary spherocytosis 52 Hereditary elliptocytosis 55	51
7.	Thalassemia Syndromes β-Thalassemia 58 α-Thalassemia 66	57
8.	Sickle Cell Disease Sickle cell anemia 70 Sickle cell trait 78 Other sickling syndromes 79 Other hemoglobinopathies 80	69

SECTION 1

9.	Hemolytic Anemias due to Red Cell Enzyme Deficiencies Metabolic pathways in red blood cells 83 Glucose-6-phosphate dehydrogenase deficiency 84 Pyruvate kinase deficiency 87	83
10.	Immunohemolytic Anemia Alloimmune hemolytic anemia 89 Autoimmune hemolytic anemia 92	89
11.	Fragmentation Syndrome Classification 98 Laboratory findings 99	98
12.	Paroxysmal Nocturnal Hemoglobinuria Definition 100 Etiology and pathogenesis 100 Clinical features 101 Laboratory findings 102	100
13.	Aplastic Anemia Definition 104 Etiology 104 Pathogenesis 105 Clinical features 106 Laboratory findings 107	104
14.	Pure Red Cell Aplasia Definition 110 Etiology 110 Clinical features 110 Laboratory findings 111	110
15.	Miscellaneous RBC Disorders Anemia of chronic disease 112 Anemia of renal disease 114 Anemia of liver disease 114 Anemias of blood loss 114 Anemia associated with marrow infiltration (myelophthisic anemia) 115	112
16.	Sideroblastic Anemia Hereditary sideroblastic anemias 118 Acquired idiopathic sideroblastic anemia 119 Congenital dyserythropoietic anemias 119	117
17.	Approach to Anemias Approach to the diagnosis of anemia 121 Approach to the diagnosis of hemolytic anemia 125	121

SECTION 2 Disorders of White Cells

18.	Quantitative and Qualitative Disorders of White Blood Cells Classification of WBC disorders 131 Quantitative disorders of leukocytes 132 Qualitative disorders of leukocytes 138	129
19.	Infectious Mononucleosis Definition 141 Pathogenesis 141 Clinical features 143 Laboratory findings 144 Lesions associated with EBV infection 146	141
20.	Introduction to Acute Leukemia Neoplastic proliferations of white cells 147 Acute leukemia 148	147
21.	Acute Lymphoblastic Leukemia Acute lymphoblastic leukemia 158 Acute lymphoblastic lymphoma 162	158
22.	Acute Myelogenous Leukemia and Related Neoplasm Acute myelogenous leukemia 164 Myeloid sarcoma 167	164
23.	Myelodysplastic Syndromes Definition 170 Classification 170 Etiology and molecular pathogenesis 172 Clinical features 173 Laboratory findings 173	170
24.	Myeloproliferative Neoplasm Essential thrombocythemia 177 Primary myelofibrosis 178	176
25.	Chronic Myelogenous Leukemia and Other Myeloid Neoplasms Chronic myelogenous leukemia 182 Myelodysplastic/myeloproliferative neoplasms 189	182
26.	Polycythemia vera 193	192

27.	Chronic Lymphocytic Leukemia and Other Lymphoid Leukemias Chronic lymphocytic leukemia 197 Prolymphocytic leukemia 201 Hairy cell leukemia 202	197
28.	Plasma Cell Neoplasms Multiple myeloma (plasma cell myeloma) 207 Plasmacytoma 215 Immunoglobulin deposition diseases 216 Monoclonal gammopathy of uncertain significance 216 Osteosclerotic myeloma 216	206
29.	Lymphopoietic System Lymph nodes 219 Development of lymphocytes (lymphopoiesis) 221	219
30.	Lymphoid Neoplasms Classification of lymphoid neoplasms 227 Precursor lymphoid neoplasms 228 Mature B cell neoplasms 228 Mature T cell and NK cell neoplasms 240	226
31.	Hodgkin Lymphoma Classical Hodgkin lymphoma 251 Nodular lymphocyte predominant Hodgkin lymphoma 256 Etiology and pathogenesis of Hodgkin lymphoma 258 Laboratory findings 259 Clinical features 260	247
32.	Langerhans Cell Histiocytosis Definition 264 Morphology 264 Laboratory findings 265	264
SE	CTION 3 Disorders of Hemostasis	
33.	Normal Hemostasis and its Components Platelets 269 Blood vessel wall 270 Coagulation system 271 Coagulation regulatory mechanism 274 Fibrinolytic system 275 Normal hemostasis 276	269

34.	Bleeding Disorders: Vessel Wall Abnormalities Disorders of hemostasis 280 Bleeding disorders caused by vessel wall abnormalities 283	280
35.	Bleeding Disorders: Abnormalities of Platelet Quantitative platelet disorders 286 Qualitative platelet disorders 296	286
36.	Bleeding Disorders: Abnormalities of Coagulation Factors Hereditary deficiencies 301 Acquired coagulation disorders 306 Disseminated intravascular coagulation 307	300
37.	Thrombotic Disorders: Hypercoagulable States Inherited hypercoagulable states 314 Acquired hypercoagulable states 315	313
SE	CTION 4 Clinical Pathology	
38.	Anticoagulants and Collection of Blood Anticoagulants 321 Steps in hematological investigation 323	321
39.	Hematopoiesis Erythropoiesis 329 Myelopoiesis 331 Megakaryopoiesis 333	329
40.	Hemoglobin Estimation Indications for hemoglobin estimation 335 Methods of hemoglobin estimation 335	335
41.	Cell Count Red blood cell count 345 Total WBC count 347 Platelet count 349 Absolute eosinophil count 351	343
42.	Peripheral Blood Smear Examination Stains for blood smear 354 Preparation of the peripheral blood smear 355 Fixation of the smear 356 Staining of the smear 356 Examination of a peripheral blood smear 357	354

43.	Methods of reticulocyte count 366 Significance of reticulocyte count 368	366
44.	Hematocrit, Red Cell Indices and ESR Estimation Hematocrit 370 Red cell (erythrocyte) indices 373 Erythrocyte sedimentation rate 375 Lupus erythematosus cell test 378	370
45.	Bone Marrow Examination	381
	Bone marrow aspiration 381 Bone marrow trephine biopsy 384	
46.	Osmotic Fragility Test Procedure 387 Interpretation 388	387
47.	Cytochemistry in Leukemia Definition 390 Myeloperoxidase 390 Sudan black B 391 Nonspecific esterase 391 Periodic acid-Schiff reaction 391 Neutrophil alkaline phosphatase 392	390
48.	Laboratory Evaluation of Hemostatic and Thrombotic Disorders	394
	Tests for platelet component 395 Tests for platelet and vascular component 396 Tests for coagulation component 398 Tests for fibrinolytic activity 402	
49.	Automation in Hematology	408
	Automated hematology analyzer 408 Flow cytometry 415	
50.	Urine Analysis	418
	Collection of urine specimen 418 Preservation of urine 419 Examination of urine 419 Physical examination 419 Chemical examination 424 Microscopic examination 439	
51.	Body Fluids	446
	Examination of body fluids 447 Examination of synovial fluids 448	

52.	Cerebrospinal Fluid Examination Importance of CSF examination 451 Collection of CSF 451 Examination of CSF 453	451
53.	Semen Analysis Different procedures of semen analysis 457 Cryopreservation of spermatozoa 462	457
54.	Pregnancy Test Pregnancy tests 466	466
55.	Sputum Examination Sputum collection 470 Examination of sputum 471	470
56.	Cytology Cytology of female genital tract 477 Cytology of other systems 480 Buccal smear for Barr body 480 FNAC appearance of some common lesions 481	474
57.	Glucose Tolerance Test Oral glucose tolerance test 484 Glycosuria 486	484
58.	Blood Group System ABO blood group system 487 Rh blood group system 492 Other blood group systems 493	487
59.	Antiglobulin Test Direct antiglobulin test 495 Indirect antiglobulin test 497	495
60.	Transfusion Medicine Blood transfusion 499 Blood components 503 Transfusion reactions 505 Exchange transfusion 508	499
61.	Hematopoietic Stem Cell Transplantation Definition 510 Sources of hematopoietic stem cells 510 Types of hematopoietic stem cell transplant 511 Indications for hematoporetic stem cell transplantation 511 Autologous stem cell transplant 511	510

Inde	x		569
, ipp(Appendix 1: WHO classification of tumors of hematopoietic and lymphoid tissues Appendix 2: Laboratory values of clinical importance 562	557	337
Anne	endices		557
Bibli	ography		555
67.	Clinical Scenario Symptoms and signs that suggest a blood disease 546 Patterns strongly suggestive of a blood disease 547		546
66.	Stool Examination Stool examination 539 Stool culture and sensitivity 545		538
65.	Thyroid Function Tests Thyroid function tests 534		533
64.	Renal Function Tests Tests for renal function 529 Renal biopsy 531		529
63,	Liver Function Tests and Liver Biopsy Liver function tests 518 Liver biopsy 524		518
62.	Gastric Function Tests Tests for gastric acid secretion 515 Other tests 516		515
	Allogeneic stem cell transplantation 512 Complications of hematopoietic stem cell transplantation 513		

Megaloblastic Anemia

Chapter Outline

- Introduction
- ☐ Metabolism of Vitamin B₁₂ and Folic Acid
- ☐ Etiology of Megaloblastic Anemia
- ☐ Laboratory Findings of Megaloblastic Anemia
- ☐ Anemias of Vitamin B₁₂ Deficiency
- Anemia of Folate Deficiency
- Nonmegaloblastic Causes of Macrocytic Anemias

INTRODUCTION

Macrocytic anemias are characterized by large red cells with a diameter of more than 9 μ and mean corpuscular volume of more than 100 fl. The causes of macrocytic anemias may be broadly divided into megaloblastic and nonmegaloblastic depending on the appearance of developing red cell precursors in the bone marrow.

Megaloblastic anemias are characterized by the presence of abnormal red cell precursors in the bone marrow known as megaloblasts. The megaloblasts differ from their normal counterpart normoblasts in several aspects (Table 4.1).

Megaloblastic anemias are common among anemias due to impaired red cell production, being second in incidence to iron deficiency and anemia of chronic disorders.

Definition

Megaloblastic anemias are diverse group of anemias characterized by **impaired DNA synthesis** and **distinct morphologic changes** in hematopoietic cells, i.e. maturation of nucleus being delayed in relation to that of cytoplasm.

 As the name implies, there is anemia with distinct morphologically abnormally large erythroid precursors in the bone marrow known as megaloblasts.

Table 4.1: Features of megaloblast

Characteristics	Megaloblast
Cell size	Larger than normoblast
Nuclear chromatin	More open-sieve like (Fig. 4.7A)
Dissociation of cytoplasmic and nuclear maturation	Nuclear maturation lags behind cytoplasmic maturation
Maturation	Marrow shows increased proportion of more primitive erythroid cells

• Consequently, the red cells in the peripheral blood are also larger than normal and are termed as **macrocytes**.

Causes of Megaloblastic Change and Macrocytic Red Cells

- Megaloblastic anemia is commonly due to deficiency of vitamin B₁₂ (cyanocobalamin)
 or folic acid, which are coenzymes required for the synthesis of one of the four nucleotide
 bases found in DNA namely thymidine.
- Deficiency of vitamin B₁₂ or folic acid causes defects in the DNA synthesis and delayed/ arrested nuclear maturation.
- Synthesis of RNA and protein is normal resulting in normal cytoplasmic maturation.
- Thus, the nuclear maturation lags behind the cytoplasmic maturation and hemoglobinization of cytoplasm continues for a long time. It results in abnormal cell proliferation of rapidly dividing cells in the bone marrow (erythroid, myeloid and megakaryocyte series). Impaired DNA synthesis causes delay in cell division, increased time between divisions, more cell growth and size of the cells. In erythroid series this nuclear to cytoplasmic asynchrony results in formation of large nucleated erythrocyte precursors named as megaloblasts. The megaloblasts have an open, stippled, lacy chromatin pattern. The megaloblastic changes are most prominent in the early nucleated red cell precursors.
- In the bone marrow, large number of megaloblastic precursors does not mature enough to be
 released into the blood, and are destroyed in the bone marrow (ineffective erythropoiesis).
 There is also mild hemolysis of red cells in the peripheral blood. This releases large amounts
 of lactate dehydrogenase (LDH) resulting in raised levels in the blood.
- Erythroid precursor cells show reduced number of mitoses and synthesis of hemoglobin is unimpaired. The mature RBCs derived from these megaloblasts are large (macrocytes) and oval but well hemoglobinized.
- In the bone marrow, abnormal proliferation affects myeloid series producing giant metamyelocytes, and the megakaryocyte series results in dysplastic megakaryocytes.
- All rapidly dividing cells of the body (including skin, GI tract, bone marrow) exhibit megaloblastic changes and anemia is only a manifestation of a more generalized defect in DNA synthesis.

METABOLISM OF VITAMIN B₁₂ AND FOLIC ACID

Metabolism of vitamin B_{12} and folic acid are closely related and both are essential for normal DNA synthesis and nuclear maturation. Other disorders may be associated with macrocytosis but megaloblastic hematopoiesis is most commonly due to deficiency of vitamin B_{12} or folic acid.

Vitamin B₁₂ Metabolism

Human beings are totally dependent on animal products in the diet for vitamin B_{12} requirement. Vitamin B_{12} is not present in food from vegetable sources. Therefore, strict vegetarians do not get an adequate quantity of vitamin B_{12} . A balanced diet (not rigid vegetarian!) contains significantly large amounts of vitamin B_{12} which accumulates in the body (liver) and is enough for several years. Due to this adequate storage, if there is any dietary deficiency or

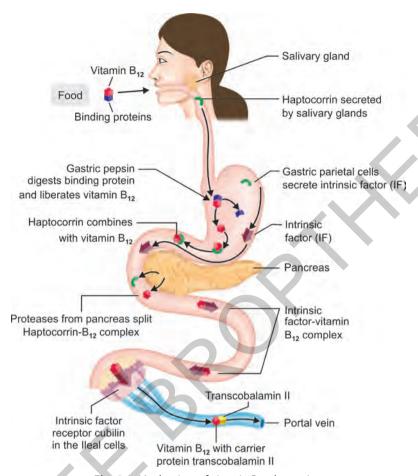


Fig. 4.1: Mechanism of vitamin B₁₂ absorption

malabsorption of vitamin B_{12} , its clinical manifestations appear only after about 2 to 4 years. Vitamin B_{12} is a complex compound known as cobalamin and daily requirement is about 2 to 3 μg .

Absorption, Transport and Storage (Fig. 4.1)

- Vitamin B_{12} in food is usually in coenzyme form (as deoxyadenosylcobalamin and methylcobalamin) and bound to binding proteins in the diet.
- In the stomach, peptic digestion at low pH is required for release of vitamin B_{12} from binding protein in the food. The released vitamin B_{12} binds with salivary protein called **haptocorrin**, which is secreted in salivary juices.
- These haptocorrin-B₁₂ complexes leave the stomach along with unbound special protein called **intrinsic factor** (IF), which is produced by gastric (fundus and cardia) parietal (oxyntic) cells (intrinsic factor is also called as Castle intrinsic factor).
- As the haptocorrin- B_{12} complexes pass into the second part of the duodenum, pancreatic proteases release vitamin B_{12} from haptocorrin. Vitamin B_{12} then associates with the intrinsic factor and forms IF- B_{12} complex.

- This stable IF-vitamin B₁₂ complex is transported to the ileum, where it is endocytosed by
 ileal enterocytes. These ileal enterocytes express a receptor on their surfaces for the intrinsic
 factor. These receptors are called **cubilin**.
- In the ileal epithelium, vitamin B_{12} combines with a major carrier protein, transcobalamin II, and is actively transported into the mucosal cells and then into the blood.
- Transcobalamin II-vitamin B₁₂ complex delivers vitamin B₁₂ to the liver and other cells of the body, particularly rapidly proliferating cells in the bone marrow and mucosal lining of the gastrointestinal tract.

Role of Vitamin B₁₂

Vitamin B_{12} is indirectly required for DNA synthesis in various metabolic steps and its deficiency impairs DNA synthesis.

Methylcobalamin is the main form of vitamin B₁₂ in plasma, and is an essential coenzyme for conversion of homocysteine to methionine and formation of tetrahydrofolate (THF) from methyl THF (Fig. 4.2). During the former reaction, vitamin B₁₂ loses its methyl group and this is replaced from methyl THF, the principal form of folic acid in plasma. Tetrahydrofolate is essential for the generation of a precursor of DNA known as deoxythymidine monophosphate (dTMP).

In vitamin B_{12} deficiency, the main cause of impaired DNA synthesis is that methyl THF is not converted into THF. Methyl THF accumulates in the cell and is known as **methyl THF trap.**

Vitamin B₁₂ is also required for conversion of methylmalonyl CoA to succinyl malonyl CoA
(Fig. 4.3). Deficiency of vitamin B₁₂ causes increased levels of methylmalonic acid in plasma

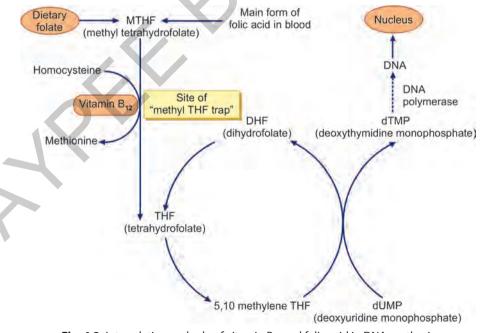


Fig. 4.2: Interrelation and role of vitamin B₁₂ and folic acid in DNA synthesis

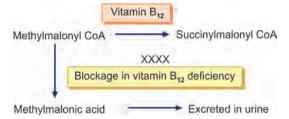


Fig. 4.3: Role of vitamin B₁₂ in methylmalonyl CoA metabolism

and urine. This results in the formation of abnormal fatty acids which get incorporated into neuronal lipids. Consequently, this predisposes to myelin breakdown and is probably responsible for neurologic complications of vitamin B_{12} deficiency.

Folic Acid Metabolism

Humans are entirely dependent on dietary sources for their folic acid requirement. The daily requirement is 50–200 mg. Green vegetables, yeast, legumes, fruits and animal proteins are the richest sources and most normal diets contain sufficient amounts of folic acid. The folic acid in these foods is largely in the form of polyglutamates. Polyglutamates are sensitive to heat (thermolabile); boiling, steaming or frying and cooking destroys most of the folic acid. Intestinal conjugases split the polyglutamates into monoglutamates that are readily absorbed in the proximal jejunum. During intestinal absorption, they are modified to 5 methyltetrahydrofolate, the normal transport form of folic acid.

Role of Folic Acid (FA)

The active form of folic acid is tetrahydrofolate (THF) which is the biologic "middleman" involved in metabolic processes which synthesize DNA. The various reactions in which folic acid plays a main role are:

- Synthesis of purine (required for DNA and RNA).
- Conversion of homocysteine to methionine, a reaction also requiring vitamin B₁₂.
- Conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP): 5,10-methylene THF polyglutamate is required for conversion of dUMP to dTMP and DNA, a rate limiting step in pyrimidine synthesis (Fig. 4.2).
- Metabolism of histidine: Histidine is metabolized to formiminoglutamic acid (FIGLU) which combines with THF to form glutamic acid (Fig. 4.4). In FA deficiency, this reaction cannot take place and therefore FIGLU accumulates and is excreted as such in urine. This is used as a test to measure folic acid deficiency.

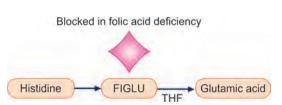


Fig. 4.4: Role of folic acid in metabolism of histidine

ETIOLOGY OF MEGALOBLASTIC ANEMIA

Megaloblastic anemia is commonly due to deficiency of vitamin B_{12} (cobalamin) or folic acid (Table 4.2).

Table 4.2: Causes of megaloblastic anemia

Vitamin B₁₂ Deficiency

Decreased intake

Inadequate diet, "pure vegetarians"

Impaired absorption

Deficiency of gastric acid or pepsin or intrinsic factor

- · Pernicious anemia
- Post-gastrectomy

Intestinal

- · Loss of absorptive surface
 - Malabsorption syndromes
 - Diffuse intestinal disease (e.g. lymphoma, systemic sclerosis)
 - Ileal resection, Crohn disease
- Bacterial or parasitic competition for vitamin B₁₂
 - Bacterial overgrowth in blind loops and diverticula of bowel
 - Fish tapeworm infestation (*Diphyllobothrium latum*)

Damage to exocrine pancreas

Increased demand

Pregnancy, hyperthyroidism, disseminated cancer

Folic Acid Deficiency

Decreased intake

Inadequate diet: Alcoholism, malnutrition

Impaired absorption

Malabsorption states: Nontropical and tropical sprue

Diffuse infiltrative diseases of the small intestine (e.g. lymphoma)

Drugs: Phenytoin and oral contraceptives

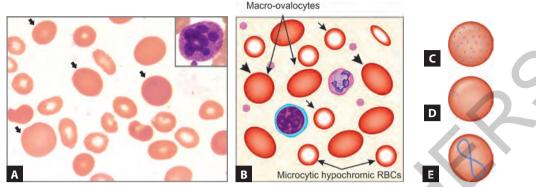
Increased loss

Hemodialysis

Increased demand

Pregnancy, infancy, disseminated cancer, markedly increased hematopoiesis

Impaired utilization

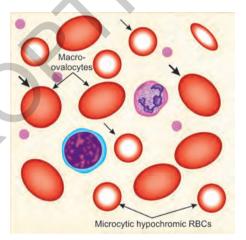

Folic acid antagonists, such as methotrexate

LABORATORY FINDINGS OF MEGALOBLASTIC ANEMIA

Certain features common to all forms of megaloblastic anemia are discussed together. Blood findings in vitamin B_{12} and/or folic acid deficiency are similar and are characterized by macrocytosis of red cells and megaloblastosis of bone marrow.

Peripheral Blood

- **Hemoglobin:** Hemoglobin levels are decreased and usually in the range of 5 to 10 g/dL.
- Hematocrit: Decreased.
- Red cell indices:
 - Mean cell (corpuscular) volume (MCV) above 100 fl (normal 82 to 98).
 - Hemoglobin content in the red cell is proportionately increased and therefore **mean corpuscular hemoglobin concentration (MCHC)** remains **normal.**
 - Mean cell (corpuscular) hemoglobin (MCH) is increased.


Figs 4.5A to E: Peripheral blood smear showing macro-ovalocytes (short arrows) and hypersegmented neutrophil (inset in A and long arrow in B); (C) Basophilic stippling; (D) Howell-Jolly bodies; (E) Cabot ring

• Peripheral smear:

- RBCs: Red blood cells are of variable size with majority being macrocytic and oval (macro-ovalocytes) and are diagnostic of megaloblastic anemia. Macrocytes are larger in diameter, thickness and volume. Because macrocytes are thicker and well-hemoglobinized, most macrocytes lack the central pallor of normal red cells and can even appear hyperchromic (Figs 4.5A to E). There is marked variation in the size and shape of red cells (anisopoikilocytosis).
- Evidences of dyserythropoiesis (refer page 32) may be present like:
 - Basophilic stippling (Fig. 4.5C) appear as blue black cytoplasmic inclusions and represents precipitated ribosomal RNA.
 - Howell-Jolly bodies (Fig. 4.5D) are nuclear remnants and may be observed in few red cells.
 - Cabot ring (Fig. 4.5E) which stains pink blue and represents nuclear remnants.
- WBCs: White cells are decreased (leukopenia) and show hypersegmented neutrophils (with five to six or more nuclear lobes). Their presence is the first and specific morphologic sign of megaloblastic anemia. Such neutrophils are also larger than normal (macropolymorphonuclear).
- Platelets: Decreased (thrombocytopenia) and the count varies.

Dimorphic anemia: In cases of combined vitamin B_{12} /folic acid and iron deficiency, peripheral smear demonstrates dual population of macrocytes and hypochromic microcytes (Fig. 4.6). However, bone marrow shows normoblastic reaction with giant metamyelocytes and complete absence of marrow iron.

Reticulocyte count: It is normal or low. Reticulocytosis does not occur since it is a
dyserythropoietic anemia. Nucleated red cells occasionally appear in the circulating blood
with severe anemia.

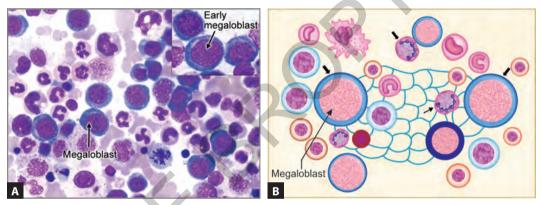


Fig. 4.6: Peripheral blood smear of dimorphic anemia showing both microcytic hypochromic cells (narrow arrow) and macrocytes (thick arrow)

Bone Marrow

Bone marrow shows characteristic morphological features.

- **Cellularity:** Marrow is moderately to **markedly hypercellular** mainly due to proliferating erythroid precursors which may completely replace the fatty marrow.
- **M**: **E** (**Myeloid**: **Erythroid**) **ratio**: Because of marked erythroid hyperplasia, M:E ratio is reversed ranging from 1:1 to 1:6 (normal 2:1 to 4:1).
- **Erythropoiesis:** It is of **megaloblastic type** (Figs 4.7A and B) in contrast to normal normoblastic type.
 - **Megaloblasts:** These are **large, abnormal counterparts of normal normoblasts** and their characteristic features are presented in Table 4.1 and Figure 4.8. Megaloblastic change is detected in all stages of red cell development. They demonstrate **asynchrony of nuclear and cytoplasmic maturation**, nuclear chromatin failing to mature because of impaired DNA synthesis while cytoplasm gets normal hemoglobinization.

Figs 4.7A and B: Bone marrow aspirate showing megaloblastic precursors (short arrows) in varying stages of maturation (inset in A shows early megaloblasts). B also shows hypersegmented neutrophils (long arrows)

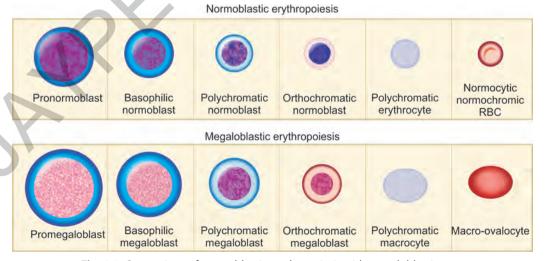


Fig. 4.8: Comparison of normoblastic erythropoiesis with megaloblastic type

Characteristics	Normoblast	Megaloblast
Cell size	Normal	Larger than corresponding normoblast
Nuclear chromatin	Normal	Open sieve-like
Nuclear maturation	Normal	Lags behind cytoplasmic maturation
Mitosis	Normal	Increased and abnormal
Maturation in bone marrow	Normal (Late >	Increased proportion of more primitive

erythroid cells (Late < intermediate < early

Present (irregular nuclei, Howell-Jolly

Bone marrow of megaloblastic anemia

Show giant metamyelocytes

normoblast)

bodies)

intermediate > early

Normal bone marrow

normoblast)

Absent

Normal

Table 4.3: Differences between normoblast and megaloblast

- Ineffective erythropoiesis: In an untreated megaloblastic anemia there is preponderance
 of more primitive cells. The late stage megaloblast forms die in marrow and are known as
 ineffective erythropoiesis (or intramedullary hemolysis).
 - *Note:* Ineffective erythropoiesis is the term used for erythropoiesis in which there is death of developing erythroid cells at the site of production and/or production of non-viable red cells.
- Dyserythropoiesis: Dyserythropoiesis means abnormal erythropoiesis with bizarre bone marrow morphology and ineffective erythropoiesis. The dyserythropoiesis in the megaloblasts demonstrates the following morphological features:
 - In the cytoplasm: Howell-Jolly bodies (see Fig. 4.5D) and abnormal hemoglobinization
 - In the nucleus: Irregular nuclear borders due to nuclear budding, nuclei joined by bridge (internuclear bridging) and abnormal mitosis.

Myelopoiesis:

Evidence of

Myelopoiesis

Found in

dyserythropoiesis

- Myeloid cells appear adequate in number, but patients with severe anemia show neutropenia.
- Because DNA synthesis is impaired in all proliferating cells, granulocytic precursors also display nuclear-cytoplasmic asynchrony in the form of giant metamyelocytes and band forms
- **Megakaryopoiesis:** Megakaryocytes are normal or increased in number. They may be abnormally large and may have bizarre, multilobate nuclei with open nuclear chromatin.
- **Bone marrow iron:** In pure vitamin B₁₂/folic acid deficiency bone marrow iron is moderately increased.

Differences between normoblast and megaloblast are presented in Table 4.3.

Common Biochemical Tests for Vitamin B₁₂ and Folic Acid Deficiency

- The deoxyuridine suppression test: Deoxyuridine suppression test is a sensitive measure of deficiency of 5,10-methylene THF, which occurs in both folic acid and vitamin B_{12} deficiency.
- Serum homocysteine: Their levels are increased.

- Serum bilirubin: Mild increase of serum bilirubin causes mild jaundice. This is due to hemolysis resulting from intramedullary death of megaloblasts in the bone marrow.
- Serum iron and ferritin: Both are increased in pure vitamin B₁₂/folic acid deficiency anemias.
- Plasma lactate dehydrogenase (LDH): Elevated often markedly.

ANEMIAS OF VITAMIN B₁₂ DEFICIENCY

Causes of Vitamin B₁₂ Deficiency (Table 4.2)

Decreased Intake

Vitamin B_{12} (cyanocobalamin) is mainly present in animal products. Vegetables and fruits contain very little vitamin B_{12} . Strict vegetarians who do not consume meat, eggs and milk are likely to develop vitamin B_{12} deficiency. Inadequate diet presents features of anemia after many years because of adequate vitamin reserves. Milk is a good source of vitamin B_{12} .

Impaired Absorption

The absorption of vitamin B_{12} can be impaired by disruption of any one of the steps involved in its absorption.

Gastric factors

- Achlorhydria (deficiency of gastric acid) and loss of pepsin secretion: The release of vitamin B₁₂ from bound proteins in food requires pepsin and low pH produced by HCl.
- Deficient IF: Gastrectomy and in pernicious anemia, the intrinsic factor is inadequate or absent.

Intestinal factors

- Loss of absorptive surface: Conditions like ileal resection, diffuse ileal disease or Crohn
 disease result in defective absorption of intrinsic factor-vitamin B₁₂ complex. Tropical sprue
 and nontropical sprue may lead to malabsorption of vitamins.
- Bacterial or parasitic competition for vitamin B₁₂.
 - Bacterial competition: Abnormal intestinal anatomy or surgical sequelae that results in stenotic areas known as blind loop or diverticulosis. In these conditions stasis of intestinal contents results in bacterial overgrowth which compete for vitamin B₁₂.
 - Parasitic competition: Fish tapeworm Diphyllobothrium latum infestation can induce a
 deficiency state by competing for vitamin B₁₂.

Damage to the exocrine pancreas

With loss of exocrine pancreatic function, vitamin B_{12} cannot be released from R-binder-vitamin B_{12} complexes.

Increased Demand

The requirement for vitamin B_{12} can be so great as to produce a relative deficiency even with normal absorption. This may be observed in circumstances like pregnancy, hyperthyroidism, disseminated cancer and chronic infections.

Pernicious Anemia

Definition

Pernicious anemia (PA) is a chronic disease resulting from deficiency of intrinsic factor causing impaired absorption of vitamin B_{12} and eventually megaloblastic anemia.

Incidence

Pernicious anemia may occur in all racial groups but is very rare in India. A genetic predisposition is suspected, because of tendency to form antibodies against multiple self-antigens.

Age

Pernicious anemia is a disease of older age and generally presents in the fifth to eighth decades of life.

Sex

Females are more involved than males (F:M is 1.5: 1).

Etiopathogenesis

Pernicious anemia is an **autoimmune** disease which develops due to destruction of gastric mucosa. The evidences for autoimmune etiology are:

- Its association with other autoimmune diseases like Graves disease, Hashimoto thyroiditis and adrenalitis is well established.
- Microscopic examination of stomach shows damage to gastric parietal cells accompanied
 by dense infiltration by lymphocytes and plasma cells. These changes are mediated both by
 cellular and humoral immune reactions and cause *chronic atrophic gastritis*.
- · Response to steroids.
- Presence of autoantibodies in most of the patients. Two major types of autoantibodies are found.
 - Anti-intrinsic factor (IF) antibody
 - Type I (blocking) antibody: This antibody blocks the binding of vitamin B_{12} to IF and are present in 50–75% of the cases. It can be detected in both plasma and gastric juice.
 - ◆ Type II (binding) antibody: It attaches to the IF-vitamin B₁₂ complex and prevent its binding to receptors in the ileum. It is present in about 40% of patients.
 - Parietal cell (Type III) antibody: It is directed against ATPase pump in parietal cells but
 is neither specific for PA nor other autoimmune disorders. It is found in 90% of patients
 with PA as well as in older patients with chronic nonspecific gastritis.

The autoimmune process (Fig. 4.9) starts with activation of CD4+ T cells which initiates injury to the gastric mucosa. The mucosal damage secondarily triggers the formation of autoantibodies, which exacerbate the damage to IF secreting parietal cells. Anemia develops when sufficient number of parietal cells are damaged (resulting in IF deficiency) along with depletion of vitamin B_{12} reserves. Thus, autoantibodies are not the primary cause of chronic atrophic gastritis but they are of diagnostic value.

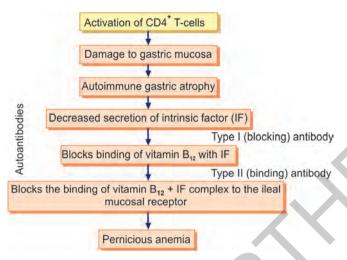


Fig. 4.9: Pathogenesis of pernicious anemia

Clinical Features (Fig. 4.10)

- **Onset:** Insidious and progresses slowly unless halted by therapy.
- Classic triad of presentation: Weakness, sore throat and paraesthesias.
- **Tongue:** Painful red "beefy" tongue due to glossitis and atrophy of papillae. The patient complains of loss of taste and appetite.
- **Peripheral neuropathy:** Glove and sock distribution of numbness or paresthesia. This tingling begins in tips of toes and progresses proximally and is bilateral and symmetric.
- Ataxia: Lack of voluntary coordination of muscle movement, uncoordinated gait, impairment of vibration and position sense.
- Atherosclerosis: Serum homocysteine level is raised and is a risk factor for atherosclerosis and thrombosis.

Laboratory Findings (Fig. 4.10)

Blood and bone marrow

The changes in the bone marrow and blood are similar to those described earlier for all megaloblastic anemias (Refer page 31–32).

Morphology

Alimentary system: Abnormalities are regularly found in the tongue and stomach.

- Atrophic glossitis: The tongue appears shiny, glazed and beefy.
- Stomach:
 - Diffuse chronic atrophic gastritis is associated with impaired secretion of hydrochloric acid, pepsin and intrinsic factor.

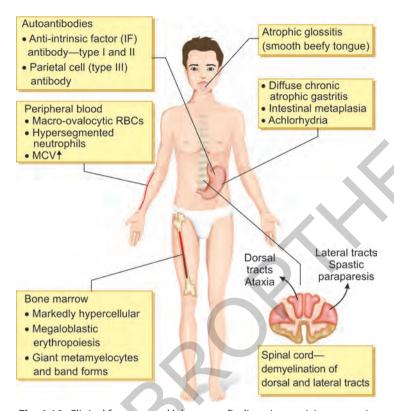


Fig. 4.10: Clinical features and laboratory findings in pernicious anemia

- The characteristic histological feature is the atrophy of the glands (mainly in the fundus), with loss of both chief cells and parietal cells. As the disease advances parietal cells disappear completely.
- The nuclei of mucosal cells are increased in size and look similar to that of megaloblasts.
- There is dense infiltration by lymphocytes and plasma cells. Severity of gastritis worsens with advancing age.
- **Intestinal metaplasia**: The epithelium lining the glands is replaced by mucus-secreting goblet cells which resemble those lining the large intestine. This is a type of metaplasia and is known as intestinal metaplasia/intestinalization.

The gastric atrophy and metaplastic changes are due to autoimmune reaction and not due to deficiency of vitamin B₁₂. So, parenteral administration of vitamin B₁₂ corrects the changes in the bone marrow, but not the gastric changes. Incidence of gastric cancer is higher in patients with pernicious anemia.

Central nervous system: The lesions are found in 75% of all cases of severe pernicious anemia.

- **Demyelination in the dorsal and lateral tracts:** The spinal cord shows demyelination in the dorsal and lateral tracts. Demyelination of dorsal tracts causes sensory ataxia and that of **lateral** tracts gives rise to spastic paraparesis, and severe paresthesia in the lower limbs.
- Because both sensory and motor pathways are involved, the term "subacute combined degeneration" is used to describe these neurologic changes found in vitamin B_{12} deficiency.

Biochemical Parameters

- Diagnostic tests for vitamin B₁₂ deficiency:
 - Serum vitamin B₁₂ levels: Decreased
 - Serum methylmalonic acid: Increased
 - Urinary excretion of methylmalonic acid: Increased.
- Schilling test for vitamin B₁₂ absorption (Fig. 4.11)

Use: Schilling test helps in distinguishing megaloblastic anemia due to intrinsic factor (IF) deficiency (Pernicious anemia) from other causes of vitamin B_{12} deficiency. It is diagnostic of PA but now very infrequently performed.

Method and interpretation: Radioactive vitamin $B_{12}(1\,\mu g)$ is given orally to a fasting patient. This is followed by non-radioactive 1,000 μg of vitamin B_{12} intramuscularly. The injected vitamin B_{12} saturates vitamin B_{12} binding proteins and flush out the ingested radioactive vitamin B_{12} which will be excreted in urine. The urine is collected for 24 hours.

- **Stage 1:** Normal persons excrete more than 10% of oral radioactive dose in 24 hour urine. Patients with pernicious anemia excrete less than 5% of the oral dose.

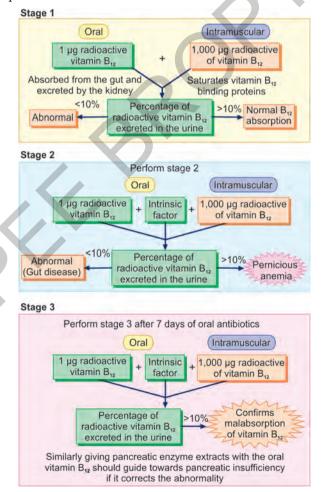


Fig. 4.11: Stages of Schilling test

Essentials in Hematology and Clinical Pathology

Salient Features

- · Provides knowledge of hematology and clinical pathology in a simple, lucid and easily understandable and reproducible format
- Highly illustrated in multicolor, easy-to-understand, and student-friendly book
- · Contemporary concepts on hematological diseases
- · Concise text in bullet form for easy review and recollection
- Key points are provided in bold words so that it will help the student to just brush through the entire book within a few hours before the examination or viva voce
- · Molecular basis of common hematological disorders
- · Laboratory findings of hematological diseases presented in simplified manner
- · A summary of important points at the end of each chapter
- Provided with essay questions, short answer questions and 351 MCQs to encourage self-assessment
- Text enhanced by 135 illustrations, 27 photomicrographs, 18 photographs, radiographs, and more than 146 tables and text boxes
- Facilitates learning and preparing for practical examination in pathology
- Book is divided into four sections—Section 1: Disorders of Red Cells (Chapters 1 to 17), Section 2: Disorders of White Cells (Chapters 18 to 32), Section 3: Disorders of Hemostasis (Chapters 33 to 37), and Section 4: Clinical Pathology (Chapters 38 to 67) deals with laboratory investigations done in routine practice
- Includes Appendix 1: Recent WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues, and Appendix 2: Reference Values of Commonly Performed Important Laboratory Tests.

Ramadas Nayak MBBS MD graduated from Mysore Medical College, Mysuru, Karnataka, India in the year 1979 and completed his postgraduation in Pathology from Kasturba Medical College, Manipal University, Mangaluru, Karnataka. Presently, he is working as Professor and Head, Department of Pathology, Yenepoya Medical College, Yenepoya University, Mangaluru. In his illustrious teaching career of 35 years, he was Head, Department of Pathology at Kasturba Medical College, Mangaluru for a span of 5 years. Apart from publishing over 84 scientific papers in both national and international journals, he is reviewer of the article for *Journal of Oral and Maxillofacial Pathology*. He serves as an

examiner for both undergraduate and postgraduate examinations in several universities. He has worked as Project Officer for Development of Cancer Atlas in India—a project conducted by Indian Council of Medical Research (ICMR) sponsored by WHO. He was the editorial Committee Member of South Asia Edition of British Medical Journal. He is also an author of seven books entitled Essentials in Hematology and Clinical Pathology, Textbook of Pathology and Genetics for Nurses, Rapid Review of Hematology, Exam Preparatory Manual for Undergraduates in General and Systemic Pathology, Exam Preparatory Manual for Undergraduates—Pathology for Dental Students, Textbook of Pathology for BPT Students, and Exam Preparatory Manual for Undergraduates—Medicine. Twice he secured "Good teacher award" and eight times "Best audiovisual award" in Kasturba Medical College, Mangaluru. Above all, he is loved and admired by his students.

Sharada Rai MBBS MD is Associate Professor, Department of Pathology, Kasturba Medical College, Manipal University, Mangaluru, Karnataka, India. She completed her postgraduation from Kasturba Medical College, Mangaluru. She is a popular hematologist having vast experience in clinical pathology. She is also an undergraduate and postgraduate teacher for the past 18 years. She has many publications in national and international journals to her credit. She has guided several Indian Council of Medical Research (ICMR) short-term projects. She is also an author of book entitled *Essentials in Hematology and Clinical Pathology*. She is examiner for both undergraduate and postgraduate examinations in many universities. She is a PSG-FAIMER fellow.

Available at all medical bookstores or buy online at www.jaypeebrothers.com

JAYPEE BROTHERS Medical Publishers (P) Ltd.

www.jaypeebrothers.com

Join us on facebook.com/JaypeeMedicalPublishers

Shelving Recommendations PATHOLOGY HEMATOLOGY

