Second Edition

Understanding ABGs & Lung Function Tests

Muhunthan Thillai Peter SJ Bailey • Keith Hattotuwa

Foreword by Karl Sylvester

Contents

Foreword

Prefo Glos Norr	Vi Xii X	
Cha	pter 1 First principles	
1.1	Anatomy	1
1.2	Respiration	7
1.3	Ventilation and lung volumes	7
1.4	Gas exchange in the alveoli	10
1.5	Gas transport in the blood	18
1.6	pH homeostasis	21
1.7	Neurological control of breathing	24
1.8	Physiological changes during exercise	25
Cha	pter 2 Understanding the tests	
	TESTING BLOOD GASES	
2.1	Arterial blood gases	29
2.2	Capillary and venous blood gases	34
2.3	Monitoring ABGs in ventilated and	
	anaesthetised patients	36
	LUNG FUNCTION TESTS	
2.4	Spirometry	37
2.5	Measurements of lung volume	49
2.6	Measurements of gas diffusion	53
2.7	Additional lung function tests	55
2.8	EXERCISE AND FITNESS TESTS	61
2.8	Cardiopulmonary exercise testing Field walk tests	65
2.9		67
2.10	Titless to fly	07
	pter 3 Recognising abnormal results	
3.1	Arterial blood gas disturbances	73
3.2	Respiratory failure	82
3.3	Lung function testing abnormalities	87

Cha	oter 4 Lung diseases	
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	Asthma Chronic obstructive pulmonary disease Other airway diseases Parenchymal disease Pulmonary vascular disease Pleural disease Obstructive sleep apnoea Obesity Chest wall disorders	93 99 105 108 111 113 114 116
Cha 5.1 5.2	oter 5 Circulatory dysfunction Pathophysiology of circulatory dysfunction Cardiac diseases	119 121
6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Respiratory tests in the management of neuromuscular disorders Motor neurone disease Myasthenia gravis Guillain–Barré syndrome Diaphragm palsy Myopathies Vocal cord paralysis Trauma and chest wall deformities Neuroactive drugs Stroke	127 130 132 133 133 135 136 137 138
7.1 7.2 7.3 7.4	pter 7 Metabolic, endocrine and renal dysfunction Diabetic ketoacidosis Conn's syndrome Lactic acidosis Renal failure	141 146 146 147
8.1 8.2 8.3 8.4		153 155 156 157

Inde	y ·	163
8.8	Cyanide poisoning	161
8.7	Carbon monoxide poisoning	160
8.6	Methaemoglobinaemia	159

Recognising abnormal results

The ability to recognise abnormal patterns in lung function and arterial blood gas abnormalities (ABGs) allows for a rapid narrowing of the differential diagnosis. For example, an obstructive lung spirometry pattern in a person with long-standing shortness of breath can point towards a particular type of respiratory disease. Likewise, a blood gas abnormality that can be easily identified as primarily metabolic or respiratory in nature can help rapidly narrow down the cause of an acute illness.

3.1 Arterial blood gas abnormalities

ABGs are one of the first investigations performed for a critically ill patient because they provide rapid and vital information on blood oxygenation, alveolar ventilation and tissue perfusion. In interpreting ABG results, it is useful to group abnormalities as primarily a disturbance of:

- · acid-base balance
- ventilation and oxygenation

Identification of critical ABG results

The major ABG changes that suggest that a patient is in a critical condition are shown in Table 3.1.

Acid-base disturbances

ABG results can show whether there is an acidotic or alkalotic disturbance of the blood.

Guiding principle

Definitions:

- Acidaemia: blood pH is <7.35
- Acidosis: the process causing acid to accumulate, usually causing acidaemia
- Alkalaemia: blood pH is >7.45
- Alkalosis: the process causing alkali to accumulate, usually causing alkalaemia

Note: the terms acidosis and alkalosis are commonly used in place of acidaemia and alkalaemia, respectively.

and whether the cause of the imbalance is primarily respiratory (i.e. related to either breathing or alveolar blood diffusion) or metabolic (i.e. concerning acid and base metabolism in the blood or cells). Therefore, four patterns of acid-base disorders

74 Recognising abnormal results

ABG measure	Indication of severity
рН	Low pH indicates acidosis that is damaging to tissues and organs
PCO ₂	Rises if patient becomes more drowsy, indicating assisted ventilation
PO ₂	Falls if patient becomes tired and cannot compensate for metabolic acidosis, indicating assisted ventilation
Lactate	High lactate indicates acidosis that is damaging to tissues and organs
Potassium	High potassium damages tissues (especially cardiomyocytes) and may necessitate emergency dialysis

Table 3.1 Major shifts in arterial blood gas (ABG) values which suggest the need for critical care support

	рН	Paco ₂ (kPa)	Standard bicarbonate (mmol/L)	Compensation
Respiratory acidosis	↓ (<7.35)	↑ (>6)	Normal/ ↑ (>22)	Renal
Respiratory alkalosis	↑ (>7.45)	↓ (<4.7)	Normal/ ↑ (>22)	Renal
Metabolic acidosis	↓ (<7.35)	Normal/	↓ (<20)	Respiratory
Metabolic alkalosis	↑ (>7.45)	Normal	↑ (>33)	Respiratory

Table 3.2 Arterial blood gas (ABG) values in the four different acid–base disturbances

are classified (**Table 3.2**). These primary disorders are usually also seen with compensatory changes in blood gases, as the system attempts to retain homeostasis. In chronic disturbances of acid–base balance, more compensation is usually seen, as the system has adapted to compensate to better protect the pH.

Figure 3.1 shows how to identify quickly which acid–base disturbance is present. Some cases of mixed acid–base

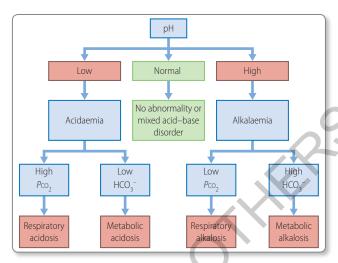


Figure 3.1 Identifying an acid-base disorder.

disturbance also occur, showing different elements of the four patterns.

The anion gap

The anion gap is a calculated estimate of the negatively charged particles in blood that are not directly measured by common blood tests. These unmeasured anions include proteins and organic acids, and the gap is based on the difference between the main measured cations (Na⁺ and sometimes K⁺) and anions (Cl⁻ and HCO₃⁻). It is important to calculate and consider this value because it helps to differentiate the cause of a metabolic acidosis. A normal anion gap is 10–18 mmol/L. Metabolic acidosis with an increased anion gap is caused by excess acid, whereas a normal anion gap metabolic acidosis is from loss of base.

The anion gap is calculated by including or, more commonly, ignoring the level of potassium (because this is usually negligible):

Anion gap =
$$([Na^+]) - ([Cl^-] + [HCO_3^-])$$

or Anion gap = $([Na^+] + [K^+]) - ([Cl^-] + [HCO_3^-])$

Interpreting the ABG report in five steps The basic rules for interpreting abnormal blood gas results are shown in **Table 3.3.** Interpreting ABG results can be done in five steps:

- 1. pH: is the primary acid–base abnormality acidaemia (<7.35) or alkalaemia (>7.45)?
- 2. PacO₂ (arterial carbon dioxide tension) and bicarbonate: does it indicate a metabolic or respiratory cause?
- 3. Compensation: is it present? If not, or it is to an inappropriate level, there may be a secondary problem
- Anion gap: this is a calculated estimate of unmeasured blood anions and is important in the context of metabolic acidosis, as it can narrow down where the acid is coming from
- 5. PaO₂: how well is the alveolar O₂ diffusing into the arteries, i.e. what is the alveolar–arterial gradient (PA–aO₂)? Compare PaO₂ to the inspired O₂ concentration that the patient is breathing and the PacO₂

Compensation Compensatory changes seen in ABG results include increased CO_2 blow-off (hyperventilation) in metabolic acidosis and increased renal H^+ excretion in respiratory acidosis. If hypoventilation occurs there is an increase in blood CO_2 concentration and pressure, and secondary changes in the bicarbonate concentration due to renal compensation. This renal compensatory mechanism is affected by the retention of sodium ions and the excretion of hydrogen ions as ammonium chloride; the sodium is available to form more sodium bicarbonate, thus increasing the bicarbonate and attempting to maintain a HCO_3^- : Paco_2 20:1 ratio.

However, renal compensation is rarely complete and the pH tends to drop. In respiratory acidosis, therefore, the blood shows an increase in $PacO_2$, total CO_2 content and bicarbonate (HCO₃⁻), and a decrease in pH and serum chloride concentration. In respiratory alkalosis, where a high pH results from hyperventilation, the opposite findings are observed.

Respiratory acidosis

In respiratory acidosis, there is a decrease in respiratory exchange (of O_2 with CO_2), causing retention of $PacO_2$ in the

Measurement	Interpretation	
рН	High pH indicates alkalosis, respiratory or metabolic Low pH indicates acidosis, respiratory or metabolic	
PaO ₂	$\label{eq:high-PaO2} \mbox{ may be due to hyperventilation causing a respiratory alkalosis} \mbox{Low $P{\it a}{\it O}_2$ indicates hypoxia and supplemental ${\it O}_2$ may be needed}$	
Paco ₂	High $PaCO_2$ indicates hypoventilation, leading to a respiratory acidosis Low $PaCO_2$ may be due to hyperventilation, leading to respiratory alkalosis	
HCO ₃ -	High bicarbonate indicates a metabolic alkalosis Low bicarbonate is seen in metabolic acidosis (e.g. diabetic ketoacidosis)	
Base excess	A more positive base excess (> +2) indicates metabolic alkalosis A more negative base excess (< -2) indicates metabolic acidosis	
Anion gap	High anion gap indicates loss of bicarbonate in metabolic acidosis Low anion gap indicates hypoalbuminaemia	

Table 3.3 Causes of changes in blood gas measurements

blood. This results in a high $Paco_2$ which leads to renal retention of bicarbonate in order to buffer the excess H⁺. The kidneys compensate by increasing secretion of H⁺ over a period of 3–5 days which results in increased plasma HCO_3^- .

Causes of respiratory acidosis are listed in Table 3.4.

Respiratory alkalosis

Respiratory alkalosis is caused by alveolar hyperventilation, so that excessive CO_2 is exhaled and a low $Pa\mathrm{CO}_2$ results. Renal compensation is by decreasing ammonium (NH₄⁺) excretion, leading to a fall in HCO_3^- .

Causes of respiratory alkalosis are listed in Table 3.5.

Type of cause	Cause
Central	Drugs, e.g. morphine and sedatives Stroke Infection
Airway obstruction	Asthma Chronic obstructive pulmonary disease (COPD)
Parenchymal emphysema	Pneumoconiosis Bronchitis Acute respiratory distress syndrome Barotrauma
Neuromuscular	Poliomyelitis Kyphoscoliosis Myasthenia gravis Muscular dystrophies
Miscellaneous	Obesity Hypoventilation

Table 3.4 Causes of respiratory acidosis

Metabolic acidosis

Metabolic acidosis results from the body producing too much acid or from the kidneys failing to excrete enough. This acid accumulation causes a primary decrease in HCO_3^- as carbonic acid is produced to buffer the acid. The lungs compensate by hyperventilation, which decreases $Paco_2$ as CO_2 is blown off.

Guiding principle

The anion gap estimates the level of serum ions that aren't measured in routine analysis because they are difficult to measure. It can be considered a measure of organic acids such as phosphate, ketones and lactate. It is calculated by subtracting the total serum anion concentration (Cl⁻ and HCO₃⁻) from serum cations (Na⁺ and K⁺). In practice, potassium is often left out because it is usually negligible. Normally, the anion gap is 10–18 mmol/L.

The anion gap calculation is important to differentiate the cause of a metabolic acidosis. If the anion gap is normal, this means that bicarbonate is being lost, either in the gastrointestinal tract (e.g. diarrhoea) or by renal disease letting it leak out. A high anion gap results from increased production of organic acids (e.g. lactic acid, urate or diabetic

Type of cause	Cause
Central nervous system stimulation	Pain Anxiety, psychosis Fever Cerebrovascular accident Meningitis Encephalitis Trauma
Hypoxaemia or tissue hypoxia	High altitude Pneumonia Pulmonary oedema Aspiration Severe anaemia
Drugs or hormonal causes	Pregnancy Progesterone Salicylates Nikethamide
Stimulation of thoracic neural receptors	Haemothorax Flail chest Cardiac failure Pulmonary embolism
Miscellaneous	Septicaemia Mechanical hyperventilation Hepatic failure Heat exposure Recovery from metabolic acidosis

Table 3.5 Causes of respiratory alkalosis. Most mechanisms increase pH by hyperventilation and CO₂ blow-off

ketoacidosis) or ingestion of large amounts of acid (e.g. ethylene glycol poisoning).

Causes of metabolic acidosis are listed in Table 3.6.

Metabolic alkalosis

Metabolic alkalosis is the result of an increase of HCO_3^- due to either a decreased H^+ concentration (e.g. by copious vomiting) or a direct increase in HCO_3^- . The latter can occur from bicarbonate retention, an intracellular shift of H^+ or by ingestion of large amounts of alkali (e.g. antacids). The lungs compensate

Type of metabolic acidosis	Cause
High anion gap	Lactic acidosis Ketoacidosis, e.g. diabetes, alcohol abuse, starvation Renal failure: acute and chronic. Toxins, e.g. methanol, ethylene glycol, salicylates
Normal anion gap	
Bicarbonate loss from gastrointestinal tract	Diarrhoea Extrarenal pancreatic or small bowel drainage Ureterosigmoidostomy Drugs, e.g. calcium chloride (acidifying agents), magnesium sulphate
Renal acidosis	Proximal renal tubular acidosis Distal renal tubular acidosis Tubulointerstitial disease
Drug induced	Potassium-sparing diuretics, e.g. amiloride, spironolactone Trimethoprim Pentamidine Angiotensin-converting enzyme (ACE) inhibitors Non-steroidal anti-inflammatory drugs (NSAIDs)
Others	Rapid saline infusion Loss of potential bicarbonate (i.e. anion loss in urine)

Table 3.6 Causes of metabolic acidosis

by slower breathing (hypoventilation) to retain CO_{2} , showing as a rise in $Paco_{2}$.

Causes of metabolic alkalosis are listed in Table 3.7.

Mixed acid-base disturbances

Mixed acid—base disturbances occur frequently in hospitalised patients, especially when they are critically ill. This is because many patients, especially in a critical condition, can have mixed pathologies affecting pH homeostasis. They can be difficult to interpret, and a good understanding of compensatory mechanisms and its proportionality is needed. Four signs that suggest a mixed acid—base disorder is present are:

Type of cause	Cause
Acute alkali administration	E.g. milk alkali syndrome
Gastrointestinal	Vomiting Nasogastric suction Villous adenoma
Renal diuretics	Hypercalcaemia Recovery from lactic acidosis/ketoacidosis Hypokalaemia
Effective extracellular volume expansion	High renin: renal artery stenosis Accelerated hypertension Aldosteronism Cushing's syndrome Steroids

Table 3.7 Causes of metabolic alkalosis

- 1. Compensation is not occurring, or is too little or too much
- 2. pH is normal but Paco₂ or HCO₃ is abnormal
- 3. Paco₂ and HCO₃⁻ are abnormal in opposite directions
- 4. In metabolic acidosis, the change in HCO₃⁻ concentration is not proportional to the change in the anion gap

One commonly seen pattern is an increased $Paco_2$ with alkaline pH. This results from an attempt to reduce the $Paco_2$ in a patient with hypercapnic respiratory failure by hyperventilation on a mechanical ventilator. Hypercapnic alkalaemia is also seen in patients with lactic acidosis or diabetic keto acidosis (DKA) who are treated with excess bicarbonate, i.e. an anion gap metabolic acidosis with metabolic alkalosis.

If $Paco_2$ or HCO_3^- is abnormal in opposite directions, so that one is raised and the other reduced, it is likely that a mixed respiratory and metabolic acid–base disorder is present. For example, combined respiratory and metabolic acidosis presents with elevated $Paco_2$ and reduced HCO_3^- . The decrease in pH is also much more than expected from the rise in $Paco_2$ values.

In combined respiratory and metabolic alkalosis, on the other hand, the $Paco_2$ is reduced and the HCO_3^- is elevated.

Similarly, the pH rise is more than you would expect when looking at the fall in *P*aco₂.

Mixed respiratory and metabolic disturbances can occur in patients with chronic obstructive pulmonary disease (COPD) who are hypercapnic with respiratory acidosis and develop a metabolic alkalosis as a result of therapy with steroids and diuretics. The pH is generally near normal.

3.2 Respiratory failure

Most of the causes of hypoxia (if sustained and severe enough) lead to respiratory failure (a $PaO_2 < 8$ kPa). Disturbed pulmonary gas exchange leads to low PaO_2 with or without raised $PaCO_2$. The mechanisms leading to respiratory failure are similar to those leading to hypoxia (discussed in more detail below).

Respiratory failure is due to one of three mechanisms, each presenting different patterns on ABGs (**Table 3.8**):

- · Inadequate ventilation of gases into alveoli
- Inadequate diffusion of gases across the respiratory membrane
- Inadequate blood perfusion

Type of failure	Causes
Ventilatory	Upper airway pathology, e.g. obstructive sleep apnoea, foreign body aspiration Lower airway pathology, e.g. cancers, obstructive airway disease Muscle pathology, e.g. myopathy, trauma Neurological disease, e.g. motor neuron disease, central respiratory depressant drugs
Diffusion	Pleural causes, e.g. pneumothorax, pleural effusions Parenchymal causes, e.g. bronchiectasis, obstructive airway disease
Perfusion	Pulmonary embolism Intracardiac shunting

Table 3.8 Causes of respiratory failure

Type I and type II respiratory failure

Patients are divided into type I and type II respiratory failure (**Table 3.9**) based on key differences in how they respond to supplemental O₂ treatment.

- Type I is hypoxia (Pao₂ < 8 kPa) with a normal/low Paco₂ and is caused by W/Qmismatch
- Type II is hypoxia and hypercapnia ($PacO_2 > 6.0 \text{ kPa}$) and is caused by hypoventilation with or without a \dot{V}/\dot{Q} mismatch

The treatment in for both is O_2 and respiratory support. Caution is required when treating type II respiratory failure, because in certain patients excessive oxygen may lead to a worsening of hypercapnia (see Chapter 4, page 103).

Type of failure	ABG results	Causes	Response to oxygen therapy
Туре І	 PaO₂ low (<8.0 kPa) PaCO₂ normal or low PA-aO₂ increased 	Asthma, pneumonia and pulmonary embolism	Usually good response
Type II	 Pao₂ decreased (<8.0 kPa) Paco₂ increased (>6.0 kPa) PA-ao₂ normal pH decreased 	Pulmonary: asthma, COPD, pneumonia, fibrosis Neuromuscular: myasthenia gravis, Guillain–Barré syndrome, poliomyelitis, Cervical spine injury Reduced respiratory drive: sedatives, CNS disease Anatomical: kyphoscoliosis	At risk of hypercapnia due to loss of central respiratory drive. Give controlled O ₂ and monitor serial ABGs

Table 3.9 Types of respiratory failure

Hypoxia

Normal Pao_2 is 10.5–13.5 kPa. Hypoxia is therefore defined as <10.5 kPa and considered severe (i.e. respiratory failure) if <8 kPa. Hypoxia and/or hypercapnia ($Paco_2 > 6$ kPa) is due to one of the following mechanisms:

- 1. Low inspired oxygen (FiO₂), e.g. when at high altitude
- Alveolar hypoventilation due to a reduction in ventilation at the level of the alveoli. Causes include physical defects of the alveoli, such as pneumonia, or a depressed respiratory centre, as seen in CNS disease or obesity-hypoventilation syndromes. The alveolar-arterial O₂ gradient (PA-aO₂) is usually normal
- 3. **Abnormal diffusion** occurs when the respiratory membrane disrupts O_2 (and CO_2) diffusion across it, leading to an increased $PA-aO_2$ gradient. Thickened, scarred basement membranes interrupt diffusion, and are seen in diseases such as idiopathic pulmonary fibrosis, sarcoidosis and other interstitial lung diseases. Diffusion of O_2 is affected to a greater extent than that of CO_2 because the latter diffuses at 20 times the rate
- 4. **Ventilation–perfusion mismatch** is when ventilation is not matching blood perfusion through the alveolar capillaries, the most common reason for hypoxia. An example is a pulmonary embolism. The ventilation–perfusion ratio (\dot{V}/\dot{Q}) represents the ratio between alveolar ventilation and capillary perfusion. A ventilation–perfusion mismatch can also occur in other conditions mentioned above, such as if pneumonia causes alveolar hypoventilation in an area of lung which remains perfused
- 5. Shunts are when blood meant for the pulmonary capillary bed bypasses it. There are various shunt mechanisms. For example, gravity exerts a physiological shunt on lung blood supply, and a normal anatomical shunt occurs due to collateral veins (e.g. the veins draining the myocardium). A right-to-left cardiac shunt is when blood moves from the right circulation to the left due to openings between atria, ventricles or great vessels, and right heart pressure is greater than left

pocket tutor

Second Edition

Understanding ABGs& Lung Function Tests

pockettutor Understanding ABGs & Lung Function
Tests is the ideal companion for medical students, junior
doctors and anyone seeking to improve their working
knowledge of these commonly used investigations.

- Anatomy & physiology review reinforces link between test results and underlying structure and function
- Guide to normal patterns and abnormalities enables you to interpret arterial blood gas and lung function tests successfully
- Representative results teach you to identify disorders commonly seen in clinical practice
- New to this edition: sections devoted to understanding venous and capillary blood gases, and interpreting results in obese patients

pocket tutor is the best-selling series that reinforces knowledge fast: in practice, in tutorials, before exams. Reminders of key underlying principles, insightful clinical scenarios and an accessible format mean you can trust pocket tutor to provide you with the right answer, whenever you need it.

www.jpmedpub.com

