CONTENTS | Normal Water Balance Water homeostasis 1 Distribution of total body water 1 Regulation of total body water 2 | 1 | |--|----| | 2. Distribution of Body Fluid Units of measurement 38 Osmoles 38 Basic concepts of osmotic activity 38 Difference between osmolality and tonicity 40 Clinical significance of tonicity 40 Osmotic pressure 41 Colloid osmotic pressure 41 Effective osmotic pressure 41 Osmosis 41 Compartmental distribution of total body water 43 Intracellular fluid 45 Extracellular fluid 45 Clinical importance of negative pressure in the interstitial space 49 Summary of total body water 51 Summary of water control in the body 52 | 38 | | 3. Pharmacology of Crystalloids Crystalloids 53 Mechanism of actions of crystalloids 55 Types of solutions 55 5% Dextrose 55 Normal saline (isotonic saline) or 0.9% NaCl 59 Dextrose saline (5% Dextrose and 0.9% NaCl) 61 Ringer's lactate 61 Isolyte P 63 Electrolyte contents of commonly used crystalloid intravenous fluids 65 | 53 | | 4. Pharmacology of Colloids General characteristics of colloids 66 Types of colloidal plasma substitutes 69 Functions of colloid plasma substitutes 70 | 66 | Prelims.indd 17 17-04-2019 12:16:35 ### xviii Practical Applications of Intravenous Fluids in Surgical Patients - Indications of colloids 70 - Human albumin 71 - Functions of albumin in health 73 - Metabolism 73 - Albumin in critical illnesses 74 - Indications for the infusion of albumin 74 - Dextran 79 - Types of dextran 79 - Clinical effects and advantages 80 - Dextran 40 84 - Dextran 70 85 - Gelatin solutions 86 - Haemaccel 93 - Gelofusine 95 #### 5. Pharmacology of Hydroxyethyl Starch - General pharmacological properties of HES 99 - Degree of volume expansion 104 - Nomenclature of HES 104 - Summary of general pharmacological properties of HES 105 - Metabolism of HES 106 - Disadvantages 106 - Special precautions 112 - Clinical uses of hydroxyethyl starch 112 - Advantages of HES 113 - Evaluation of HES 113 - First-generation HES: Hetastarch (HES 450/0.7) 113 - Second-generation HES: Pentastarch HAES-Steril (200/0.5): 3%, 6%, 10% 114 - Third-generation HES: Tetrastarch 117 - Pharmacodynamics 117 - Pharmacokinetics 118 - Indications and clinical use 119 - Contraindications 119 - Warning and precautions 120 - Adverse reactions 120 - Tetrastarch in special patient groups 121 - Effects on microcirculation and oxygenation by tetrastarch 121 - Effects on systemic inflammation and endothelial activation by tetrastarch 122 - Characteristics of some available colloids 126 - Tetrastarch v/s pentastarch: summary 126 Prelims.indd 18 17-04-2019 12:16:35 99 | Contents | xix | |---|-----| | 6. Current Consensus on Crystalloids and Colloids in the Perioperative Period Choice of fluids crystalloid or colloid 128 Colloid solutions 128 Crystalloid solutions 129 Clinical significance of reflection coefficient 130 Points to remember 130 Accepted statements of colloid/crystalloid 130 Current controversies of fluid and volume management 131 | 128 | | 7. Fluid Replacement Therapy Types of fluid used for volume replacement 137 Osmosis 138 Practical fluid balance 138 Mechanism of action of fluids 141 Points to remember 142 Surgery and Stress Response 142 Types of Surgery 142 Resuscitation of body spaces with various solutions 143 Perioperative issues affecting fluid management 144 General principles of fluid replacement 145 Perioperative fluid therapy 147 Key points 147 Key points 147 Assessment of daily fluid requirement 147 Maintenance fluids 148 Goals of intraoperative fluid administration 149 Replacement fluids 149 Hole in the bucket analogy 155 | 137 | | 8. Perioperative Fluid Therapy in Infants and Children Fluid therapy in infants and children 157 Important differences between infant, children and adult 157 Important points for calculating the fluid requirement 161 Assessment and correction of any fluid deficit 162 Maintenance fluids 162 Neonatal maintenance fluid requirement 162 Infants and older children maintenance fluid requirement 163 Important facts about administering dextrose solutions 163 Avoid dextrose 4% or 5% 164 | 157 | Prelims.indd 19 17-04-2019 12:16:35 9. | Practical Applications of Intravenous Fluids in Surgical Patien | ts | |---|-----| | Fluid and dextrose management during surgery Important points to remember regarding calculation of fluids in infant and children 165 Management of perioperative fluid therapy 166 Important points to remember in perioperative fluid management 166 | 164 | | Importance of composition of intravenous fluids Goals of perioperative fluid administration 168 Preoperative management 168 How to evaluate preoperative deficit? 169 Important key points 179 | 166 | | Fluids Therapy in Trauma Resuscitation The golden hour 181 Goals of fluid administration 182 Types of fluids for volume replacement 182 Choice of fluids in various conditions 182 Oxygen transport in the high-risk or critically ill surgical patient 187 Route and rate of fluid administration in various conditions 187 End point of fluid therapy and monitoring 188 Measure of preload-central venous pressure 188 Complications of transfusion 189 | | | Fluid Therapy in Fever | | #### 10. 190 181 - Definition of fever 190 - Important facts about fever 190 - Temperature control by the hypothalamus 191 - Resetting the hypothalamic temperature-regulating center in febrile diseases 191 - Mechanism of action of pyrogens in causing fever—role of interleukin-l 191 - Effects of changing the set-point of hypothalamic temperature controller 192 - Crisis or flush 193 - Fever caused by brain lesions 193 - Postoperative fever 194 - Clinical significance of fever 194 - Assessment 197 - Management 197 - Assessment for fever when infection is suspected 197 - Management for fever when infection is suspected 197 Prelims.indd 20 17-04-2019 12:16:35 | | Contents | xxi | |---|-----------|-----| | Points to remember before administering anesthesia 198 Mechanism of action of antipyretics 198 Goals for anesthetising patients having fever | 199 | | | 11. Fluids in Intestinal Obstruction Problems faced by anesthesiologist with intestinal obstruction 202 Systemic derangements with intestinal obstruction 202 Approach towards a patient with intestinal obstruction 207 Preoperative preparation 209 Assessment of adequacy of fluid replacement Important points to remember 212 Clinical response of the patient after infusion of fluids 212 Benefits of volume loading 212 | 212 | 202 | | 12. Fluid Management in Neurosurgical Patients Principles of water movement across blood-brain barrier (BBB) 213 Basics of fluid movement in the CNS 215 Basic concepts of perioperative management of fluids 221 Intraoperative fluid management of neurosurgical patients 222 Use of hyperosmolar fluid for cerebral dehydra Fluid management in neurosurgical patients | ation 225 | 213 | 234 craniotomy 229 • Newer developments 232 care units 231 under special circumstances patient for · Fluids in patients with diabetes insipidus with Fluids in postoperative and neurointensive • Fluids during aneurysmal surgery 229 traumatic brain injury 230 13. Fluid Therapy in Traumatic Brain Injury • The "Lund concept" for TBI 234 brain injury patients 237 • Fluid resuscitation in traumatic brain injured patients 236 • Basic concepts in fluid management in traumatic | | D., -+!! A., -!!+! | -£1 | minus alla suo | C | D-4:4 | |------|------------------------|----------------|----------------|----------|----------| | cxii | Practical Applications | of intravenous | Fluias in | Surgical | Patients | Focus on preventing further injury in traumatic brain injury patients 237 Summary of choice of fluids 245 14. Fluid Therapy in Pre-eclampsia and Eclampsia • Incidence of pre-eclampsia 246 • Definition of pre-eclampsia 246 • Definition of proteinuria 246 246 263 - Classification of pregnancy induced hypertension 247 - Pathophysiology 248 - Effects on various systems 249 - Clinical importance of oxygen delivery 253 - Choice of analgesia/anesthesia in pre-eclamptic patients 253 - Fluid therapy in pre-eclampsia 253 - Basic concepts of prehydration 254 - Safety precautions while prehydrating patient 254 - Prehydration before regional anesthesia 255 - Precautions before initiation of regional analysis 255 - Fluid management in pregnant patients in specific conditions 256 - Important points to remember for selecting fluids in PET patients 258 - Goals of fluid management in pregnant patients with pre-eclampsia 259 - Current consensus in fluid therapy in PET 260 - Assessment of renal function and fluid balance 261 - Management of acute pulmonary edema (APO) 261 - Care of pre-eclamptic patients after parturition 262 ## 15. Fluid Management in the Ventilated Patient - Physiological considerations 263 - Homeostatic responses to maintain plasma volume 264 - The influence of positive pressure ventilation on fluid balance 266 - Summary of IPPV and PEEP on water balance 268 - The Starling equation 268 - Factors which help to prevent alveolar edema 270 - Goals of fluid management in the ventilated patient 271 - Maintenance fluids 271 - Clinical applications of central venous pressure (CVP) or pulmonary artery occlusion pressure (PaOP) 273 - Replacement fluids 274 17-04-2019 12:16:35 Prelims.indd 22 | | Contents | xxiii | |---|----------|-------| | Resuscitative fluids 274 Choice of resuscitation fluids 274 Monitoring fluid therapy 278 Minimally invasive methods 279 Invasive measures 281 | | | | 16. Calculation of Fluids Drop rate calculation of fluid 283 Infusion of drug protocol 284 | | 283 | | Index | | 287 | Prelims.indd 23 17-04-2019 12:16:35